Chin. Phys. Lett.  1996, Vol. 13 Issue (1): 1-4    DOI:
Original Articles |
Role of Self-Coupling in Dynamics of Diluted Hopfield Neural Networks
HU Bei-lai1;ZHANG Yan-xin2
1Department of Physics, 2Institute of Modern Optics, Nankai University, Tianjin 300071
Cite this article:   
HU Bei-lai, ZHANG Yan-xin 1996 Chin. Phys. Lett. 13 1-4
Download: PDF(165KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dynamical equation of diluted Hopfield neural networks with self-couplings is calculated by analytical approach. The presented results show that the self-coupling strongly influences the dynamical behavior of the network, making the critical loading value αc smaller remarkably and the size of basin of attraction decrease.
Keywords: 05.20.-y      05.90.+m     
Published: 01 January 1996
PACS:  05.20.-y (Classical statistical mechanics)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1996/V13/I1/01
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Bei-lai
ZHANG Yan-xin
Related articles from Frontiers Journals
[1] GE Hong-Xia,YU Jian,LO Siu-Ming**. A Control Method for Congested Traffic in the Car-Following Model[J]. Chin. Phys. Lett., 2012, 29(5): 1-4
[2] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 1-4
[3] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 1-4
[4] SHEN Jing. Condensation of Self-Driven Particles in Scale-Free Networks[J]. Chin. Phys. Lett., 2010, 27(2): 1-4
[5] DENG Wei-Bing, GUO Long, LI Wei, CAI Xu. Worldwide Marine Transportation Network: Efficiency and Container Throughput[J]. Chin. Phys. Lett., 2009, 26(11): 1-4
[6] ZOU Zhi-Yun, MAO Bao-Hua, HAO Hai-Ming, GAO Jian-Zhi, YANG Jie-Jiao. Regular Small-World Network[J]. Chin. Phys. Lett., 2009, 26(11): 1-4
[7] HUA Da-Yin. Dynamics of Symmetric Conserved Mass Aggregation Model on Complex Networks[J]. Chin. Phys. Lett., 2009, 26(1): 1-4
[8] LI Wei, Q. A. Wang, A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation[J]. Chin. Phys. Lett., 2008, 25(4): 1-4
[9] SHEN Dan, WANG Wen-Xiu, JIANG Yu-Mei, HE Yue, HE Da-Ren. Response to Disturbance and Abundance of Final State: a Measure for Complexity?[J]. Chin. Phys. Lett., 2007, 24(7): 1-4
[10] DAI Jun, HE Da-Ren. Phase Transition of a Distance-Dependent Ising Model on the Barabasi--Albert Network[J]. Chin. Phys. Lett., 2007, 24(12): 1-4
[11] LI Ping, XIONG Xing, QIAO Zhong-Liang, YUAN Gang-Qiang, SUN Xing, WANG Bing-Hong. Topological Properties of Urban Public Traffic Networks in Chinese Top-Ten Biggest Cities[J]. Chin. Phys. Lett., 2006, 23(12): 1-4
[12] SHEN Yi, ZHU Di-Ling, LIU Wei-Ming. Fermi--Dirac Statistics of Complex Networks[J]. Chin. Phys. Lett., 2005, 22(5): 1-4
[13] ZHANG Xiao-Peng, BAO Jing-Dong. Negative Resistance in a Two-Dimensional System with Entropic Barrier[J]. Chin. Phys. Lett., 2005, 22(2): 1-4
[14] LI Zai-Dong, LI Lu, LIANG Jiu-Qing. Soliton Collision in a Ferromagnetic Spin Chain Driven by a Magnetic Field[J]. Chin. Phys. Lett., 2004, 21(3): 1-4
[15] YANG Chun-Bin. Stability of the Distribution in a Money Exchange Model[J]. Chin. Phys. Lett., 2004, 21(1): 1-4
Viewed
Full text


Abstract