Chin. Phys. Lett.  2003, Vol. 20 Issue (8): 1192-1195    DOI:
Original Articles |
An Almost-Poisson Structure for Autoparallels on Riemann-Cartan Spacetime
GUO Yong-Xin1;SONG Yan-Bin1;ZHANG Xiao-Bin2;CHI Dong-Pyo3
1Department of Physics, Liaoning University, Shenyang 110036 2Faculty of Animal Science and Veterinany Medicine, Jinzhou Medical Science College, Jinzhou 121001 3Department of Mathematics, Seoul National University, Seoul 151-742, Korea
Cite this article:   
GUO Yong-Xin, SONG Yan-Bin, ZHANG Xiao-Bin et al  2003 Chin. Phys. Lett. 20 1192-1195
Download: PDF(210KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An almost-Poisson bracket is constructed for the regular Hamiltonian formulation of autoparallels on Riemann-Cartan spacetime, which is considered to be the motion trajectory of spinless particles in the space. This bracket satisfies the usual properties of a Poisson bracket except for the Jacobi identity. There does not exist a usual Poisson structure for the system although a special Lagrangian can be found for the case that the contracted torsion tensor is a gradient of a scalar field and the traceless part is zero. The almost-Poisson bracket is decomposed into a sum of the usual Poisson bracket and a “Lie-Poisson”bracket, which is applied to obtain a formula for the Jacobiizer and to decompose a non-Hamiltonian dynamical vector field for the system. The almost-Poisson structure is also globally formulated by means of a pseudo-symplectic two-form on the cotangent bundle to the spacetime manifold.
Keywords: 03.20.+i      04.20.Fy     
Published: 01 August 2003
PACS:  03.20.+i  
  04.20.Fy (Canonical formalism, Lagrangians, and variational principles)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I8/01192
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Yong-Xin
SONG Yan-Bin
ZHANG Xiao-Bin
CHI Dong-Pyo
Related articles from Frontiers Journals
[1] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 1192-1195
[2] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 1192-1195
[3] JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 1192-1195
[4] ZHANG Yi. Stability of Manifold of Equilibrium States for Nonholonomic Systems in Relative Motion[J]. Chin. Phys. Lett., 2009, 26(12): 1192-1195
[5] AFTAB Ahmed, NASEER Ahmed, QUDRAT Khan. Conservation Laws for Partially Conservative Variable Mass Systems via d'Alembert's Principle[J]. Chin. Phys. Lett., 2008, 25(9): 1192-1195
[6] Gamal G. L. Nashed. Moller's Energy of Kerr-NUT Metric[J]. Chin. Phys. Lett., 2008, 25(4): 1192-1195
[7] ZHENG Shi-Wang, XIE Jia-Fang, CHEN Wen-Cong. A New Conserved Quantity Corresponding to Mei Symmetry of Tzenoff Equations for Nonholonomic Systems[J]. Chin. Phys. Lett., 2008, 25(3): 1192-1195
[8] ZHENG Shi-Wang, XIE Jia-Fang, ZHANG Qing-Hua. Mei Symmetry and New Conserved Quantity of Tzenoff Equations for Holonomic Systems[J]. Chin. Phys. Lett., 2007, 24(8): 1192-1195
[9] MEI Feng-Xiang, XIE Jia-Fang, GANG Tie-Qiang. Stability of Motion of a Nonholonomic System[J]. Chin. Phys. Lett., 2007, 24(5): 1192-1195
[10] Gamal G. L. Nashed. Regular Charged Solutions in Moller's Tetrad Theory of Gravitation[J]. Chin. Phys. Lett., 2007, 24(11): 1192-1195
[11] CHENG Yong-Shan, GONG Rong-Zhou, LI Hong. Motion of a Bose--Einstein Condensate Bright Soliton Incident on a Step-Like Potential[J]. Chin. Phys. Lett., 2007, 24(1): 1192-1195
[12] WU Ya-Bo, SHAO Ying, GUI Yuan-Xing. Double Noncommutative Jackiw--Teitelboim Gravity Model in 1+1 Dimensions[J]. Chin. Phys. Lett., 2004, 21(10): 1192-1195
[13] TIAN Gui-Hua, ZHAO Zheng. Proper Accelerations of Time-Like Curves near a Null Geodesic[J]. Chin. Phys. Lett., 2003, 20(9): 1192-1195
[14] LUO Shao-Kai. New Types of the Lie Symmetries and Conserved Quantities for a Relativistic Hamiltonian System[J]. Chin. Phys. Lett., 2003, 20(5): 1192-1195
[15] LUO Shao-Kai. Form Invariance and Lie Symmetries of the Rotational Relativistic Birkhoff System[J]. Chin. Phys. Lett., 2002, 19(4): 1192-1195
Viewed
Full text


Abstract