Chin. Phys. Lett.  2003, Vol. 20 Issue (9): 1448-1451    DOI:
Original Articles |
Multilinear Variable Separation Approach in (3+1)-Dimensions: the Burgers Equation
YING Jin-Ping1,2;LOU Sen-Yue1,3,4
1Department of Physics, Shanghai Jiao Tong University, Shanghai 200030 2Zhejiang Business Technology Institute, Ningbo 315012 3School of Mathematics, The University of New South Wales, Sydney, NSW 2052, Australia 4Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
YING Jin-Ping, LOU Sen-Yue 2003 Chin. Phys. Lett. 20 1448-1451
Download: PDF(216KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The multi-linear variable separation approach has been proven to be very useful in solving many (2+1)-dimensional integrable systems. Taking the (3+1)-dimensional Burgers equation as a simple example, here we extend the multi-linear variable separation approach to (3+1)-dimensions. The form of the universal formula obtained from many (2+1)-dimensional system is still valid. However, a more general arbitrary function (with three independent variables) has been included in the formula. Starting from the universal formula, one may obtain abundant (3+1)-dimensional localized excitations. In particular, we display a special paraboloid-type camber soliton solution and a dipole-type dromion solution which is localized in all directions.

Keywords: 05.45.Yv      02.30.Jr      02.30.Ik     
Published: 01 September 2003
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I9/01448
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YING Jin-Ping
LOU Sen-Yue
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1448-1451
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 1448-1451
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1448-1451
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1448-1451
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1448-1451
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1448-1451
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1448-1451
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1448-1451
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1448-1451
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1448-1451
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 1448-1451
[12] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 1448-1451
[13] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 1448-1451
[14] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1448-1451
[15] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 1448-1451
Viewed
Full text


Abstract