Chin. Phys. Lett.  2003, Vol. 20 Issue (12): 2114-2117    DOI:
Original Articles |
Construction of Generalized Synchronization for a Kind of Array Differential Equations and Applications
ZHANG Xiao-Dan;ZHANG Li-Li;MIN Le-Quan
Applied Science School, University of Science and Technology Beijing, Beijing 100083
Cite this article:   
ZHANG Xiao-Dan, ZHANG Li-Li, MIN Le-Quan 2003 Chin. Phys. Lett. 20 2114-2117
Download: PDF(901KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Chaos synchronization, as a special complex phenomenon, has been studied for about a decade. Only recently, generalized chaotic synchronization phenomena have been realized to be general in the real world and have potential applications. We present two theorems for constructing a kind of array differential equations with generalized synchronization (GS) with respect to linear transformations. Two array differential equation systems with GS are introduced based on our theorems. Numerical simulations show that the two systems display periodic GS and chaotic GS, respectively.
Keywords: 05.45.Xt      05.45.Jn      05.45.Gg     
Published: 01 December 2003
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I12/02114
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xiao-Dan
ZHANG Li-Li
MIN Le-Quan
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 2114-2117
[2] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 2114-2117
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2114-2117
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 2114-2117
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 2114-2117
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 2114-2117
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 2114-2117
[8] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 2114-2117
[9] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 2114-2117
[10] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 2114-2117
[11] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 2114-2117
[12] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 2114-2117
[13] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 2114-2117
[14] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 2114-2117
[15] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 2114-2117
Viewed
Full text


Abstract