Chin. Phys. Lett.  2004, Vol. 21 Issue (1): 37-39    DOI:
Original Articles |
Multisymplectic Hamiltonian Formulation for a One-Way Seismic Wave Equation of High-order Approximation
CHEN Jing-Bo
Institute of Geology and Geophysics, Chinese Academy of Sciences, PO Box 9825, Beijing 100029
Cite this article:   
CHEN Jing-Bo 2004 Chin. Phys. Lett. 21 37-39
Download: PDF(172KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the Lagrangian density and covariant Legendre transform, we obtain the multisymplectic Hamiltonian formulation for a one-way seismic wave equation of high-order approximation. This formulation provides a new perspective for studying the one-way seismic wave equation. A multisymplectic integrator is also derived.


Keywords: 11.10.Ef      02.70.Bf      91.30.Rz      91.30.Fn     
Published: 01 January 2004
PACS:  11.10.Ef (Lagrangian and Hamiltonian approach)  
  02.70.Bf (Finite-difference methods)  
  91.30.Rz (Nuclear explosion seismology)  
  91.30.Fn (Surface waves and free oscillations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I1/037
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jing-Bo
Related articles from Frontiers Journals
[1] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 37-39
[2] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 37-39
[3] CHEN Xiang-Wei, MEI Feng-Xiang** . Jacobi Last Multiplier Method for Equations of Motion of Constrained Mechanical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 37-39
[4] GUO Xiao-Bo, TAO Jun, LI Lei, WANG Shun-Jin,. Light Flavor Vector and Pseudo Vector Mesons from a Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing Interactions[J]. Chin. Phys. Lett., 2010, 27(6): 37-39
[5] ZHANG Zheng-Di, BI Qin-Sheng . Singular Wave Solutions of Two Integrable Generalized KdV Equations[J]. Chin. Phys. Lett., 2010, 27(10): 37-39
[6] CHENG Hua, ZANG Wei-Ping, ZHAO Zi-Yu, LI Zu-Bin, ZHOU Wen-Yuan, TIANJian-Guo. Non-Paraxial Split-Step Semi-Vectorial Finite-Difference Method for Three-Dimensional Wide-Angle Beam Propagation[J]. Chin. Phys. Lett., 2010, 27(1): 37-39
[7] ZHANG Ying. Z' Mixing Effect in Stueckelberg Extended Effective Theory[J]. Chin. Phys. Lett., 2009, 26(8): 37-39
[8] GUO Xiao-Bo, TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin,. A Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing[J]. Chin. Phys. Lett., 2009, 26(4): 37-39
[9] ZHANG Hua-Yan, RAN Zheng. Lie Symmetry and Nonlinear Instability in Computation of KdV Solitons[J]. Chin. Phys. Lett., 2009, 26(3): 37-39
[10] TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin. A Light-Cone QCD Inspired Effective Hamiltonian Model for Pseudoscalar and Scalar Mesons[J]. Chin. Phys. Lett., 2008, 25(9): 37-39
[11] WU Hong-Tu, HUANG Chao-Guang, GUO Han-Ying. From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality[J]. Chin. Phys. Lett., 2008, 25(8): 37-39
[12] WANG Hui-Ping, WANG Yu-Shun, HU Ying-Ying. An Explicit Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2008, 25(7): 37-39
[13] WANG Yu-Shun, LI Qing-Hong, SONG Yong-Zhong. Two New Simple Multi-Symplectic Schemes for the Nonlinear Schrodinger Equation[J]. Chin. Phys. Lett., 2008, 25(5): 37-39
[14] CHEN Jing-Bo, LIU Hong. Two Kinds of Square-Conservative Integrators for Nonlinear Evolution Equations[J]. Chin. Phys. Lett., 2008, 25(4): 37-39
[15] M. S. Kovacevic, A. Djordjevich. Thermal Diffusion Process Estimation for Fabrication of Graded Plastic Optical Fibre[J]. Chin. Phys. Lett., 2008, 25(11): 37-39
Viewed
Full text


Abstract