Chin. Phys. Lett.  2002, Vol. 19 Issue (9): 1254-1256    DOI:
Original Articles |
Hyperbolic Structures and the Stickiness Effect
ZHOU Ji-Lin;ZHOU Li-Yong;SUN Yi-Sui
Department of Astronomy and Center of Astronomy and Astrophysics in Eastern China, Nanjing University, Nanjing 210093
Cite this article:   
ZHOU Ji-Lin, ZHOU Li-Yong, SUN Yi-Sui 2002 Chin. Phys. Lett. 19 1254-1256
Download: PDF(648KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The stickiness effect of invariant tori in the phase space is widely studied and extended to the slow-down of orbital diffusion due to some other invariant sets, such as Cantori, island-chains and hyperbolic periodic orbits. We report two models in which hyperbolic periodic orbits show the stickiness effect. The generalized stickiness effects caused by different invariant sets are discussed. We believe that the main cause of the generalized stickiness effects is the hyperbolic structures in the phase space of the dynamical systems.
Keywords: 05.45.Ac      05.60.Cd     
Published: 01 September 2002
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.60.Cd (Classical transport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I9/01254
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Ji-Lin
ZHOU Li-Yong
SUN Yi-Sui
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 1254-1256
[2] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 1254-1256
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 1254-1256
[4] LIU Jian, FAN Jian-Fen**. Relationship between the Permeation-Diffusion Parameters of a Single-File Channel[J]. Chin. Phys. Lett., 2012, 29(1): 1254-1256
[5] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 1254-1256
[6] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 1254-1256
[7] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 1254-1256
[8] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 1254-1256
[9] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 1254-1256
[10] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 1254-1256
[11] Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 1254-1256
[12] Gabriela A. Casas**, Paulo C. Rech*** . Numerical Study of a Three-Dimensional Hénon Map[J]. Chin. Phys. Lett., 2011, 28(1): 1254-1256
[13] XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 1254-1256
[14] BAO Bo-Cheng, XU Jian-Ping, LIU Zhong. Initial State Dependent Dynamical Behaviors in a Memristor Based Chaotic Circuit[J]. Chin. Phys. Lett., 2010, 27(7): 1254-1256
[15] JI Ying, BI Qin-Sheng. Spiking Behavior in Chua's Circuit[J]. Chin. Phys. Lett., 2010, 27(6): 1254-1256
Viewed
Full text


Abstract