CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption |
LI Ji-Ling1, YANG Guo-Wei1, ZHAO Ming-Wen2, LIU Xiang-Dong2, XIA Yue-Yuan2** |
1State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, Nanotechnology Research Center, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 2School of Physics, Shandong University, Jinan 250100 |
|
Cite this article: |
LI Ji-Ling, YANG Guo-Wei, ZHAO Ming-Wen et al 2010 Chin. Phys. Lett. 27 097101 |
|
|
Abstract We theoretically show that H atoms can be chemically adsorbed onto the surface of the Si-C heterofullerene-based nanotubes. The adsorbing energy of the H atom on Si-C heterofullerene-based nanotubes is in the range of 4.28-5.66 eV without any barrier for the H atom to approach to the Si-C heterofullerene-based nanotubes. The band-gap of Si-C heterofullerene-based nanotubes can be dramatically modified by introducing dopant states, i.e., there is a transition from semiconductor to conductor of the Si-C heterofullerene-based nanotubes induced by the adsorption of the H atom. These results actually open a way to tune electronic properties of heterofullerene-based nanotubes and thus may propose an efficient pathway for band structure engineering.
|
Keywords:
71.20.TX
61.46.-w
73.22.-f
|
|
Received: 07 June 2010
Published: 25 August 2010
|
|
PACS: |
71.20.Tx
|
(Fullerenes and related materials; intercalation compounds)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
|
|
|
[1] Kroto H W et al 1985 Nature 318 162 [2] Iijima S 1991 Nature 354 56 [3] Branz W et al 1998 J. Chem. Phys. 109 3425 [4] Clemmer D E et al 1994 Nature 372 248 [5] Yu R et al 1995 J. Phys. Chem. 99 1818 [6] Guo T et al 1991 J. Chem. Phys. 95 4948 [7] Fye J L and Jarrold M F 1997 J. Phys. Chem. A 101 1836 [8] Ray C et al 1998 Phys. Rev. Lett. 80 5365 [9] Pellarin M et al 1999 J. Chem. Phys. 110 6927 [10] Fu C C et al 2001 Phys. Rev. B 63 085411 [11] Matsubara M and Massobrio C 2005 J. Phys. Chem. A 109 4415 [12] Matsubara M et al 2006 Phys. Rev. Lett. 96 155502 [13] Rao A M et al 1993 Science 259 955 [14] Onoe J et al 1993 Chem. Phys. Lett. 315 19 [15] Bandow S et al 2001 Chem. Phys. Lett. 337 48 [16] Onoe J et al 2003 Appl. Phys. Lett. 82 595 [17] Wang G, Li Y X and Huang Y H 2005 J. Phys. Chem. B 109 10957 [18] Tsukamoto S and Nakayama T 2005 J. Chem. Phys. 122 074702 [19] Beu T A et al 2005 Phys. Rev. B 72 155416 [20] Li J L et al 2008 J. Chem. Phys. 128 154719 [21] Ordejón P et al 1996 Phys. Rev. B 53 R10441 [22] Sánchez-Portal D et al 1997 Int. J. Quantum Chem. 65 453 [23] Soler J M et al 2002 J. Phys.: Condens. Matter 14 2745 [24] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 [25] Bylander D M and Kleinman L 1990 Phys. Rev. B 41 907 [26] Perdew J P et al 1996 Phys. Rev. Lett. 77 3865 [27] Junquera J et al 2001 Phys. Rev. B 64 235111 [28] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|