Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 094201    DOI: 10.1088/0256-307X/27/9/094201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
The Axial Spatial Evolution of Optical Field near the Talbot Plane of a Grating

LU Yun-Qing, LI Pei-Li, ZHENG Jia-Jin

College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003
Cite this article:   
LU Yun-Qing, LI Pei-Li, ZHENG Jia-Jin 2010 Chin. Phys. Lett. 27 094201
Download: PDF(536KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The diffraction field distribution of a high density grating with a period of 2.5λ is analyzed with the finite-difference time-domain (FDTD) method. The numerical results show the axial spatial evolution of the optical field near the 1/2 Talbot plane of the grating, which is verified by experiment with the scanning near-field optical microscopy (SNOM) technique. It should be helpful for understanding more clearly the diffraction behavior of a high density grating in micro- and nano-optics and be beneficial for applications of the Talbot effect, such as the near-field photolithography.

Keywords: 42.79.Dj      42.25.Fx      78.20.-e     
Received: 29 March 2010      Published: 25 August 2010
PACS:  42.79.Dj (Gratings)  
  42.25.Fx (Diffraction and scattering)  
  78.20.-e (Optical properties of bulk materials and thin films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/094201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/094201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Yun-Qing
LI Pei-Li
ZHENG Jia-Jin
[1] Talbot W H F 1836 Philos. Mag. 9 401
[2] Lohmann A W and Thomas J A 1990 Appl. Opt. 29 4337
[3] Nowak S et al 1997 Opt. Lett. 22 1430
[4] Zhou C et al 1999 Opt. Commun. 161 209
[5] Zhou C, Wang W, Dai E and Liu L 2004 Opt. & Phot. News 15 46
[6] Lu Y, Zhou C, Wang S and Wang B 2006 J. Opt. Soc. Am . A 23 2154
[7] Yee K S 1966 IEEE Trans. Antenna Propag. AP-14 302
[8] Taflove A and Hagness S 2000 Computational Electromagnetics: The Finite-Difference Time Domain Method 2nd edn (Norwood, MA: Artech House)
[9] Wei P, Chou H and Chen Y 2004 Opt. Lett. 29 433
[10] Judkins J B et al 1995 J. Opt. Soc. Am . A 12 1974
[11] Lehner B et al 2004 Thin Solid Films 455-456 462
[12] Smolyaninov I I and Davis C C 1998 Opt. Lett. 23 1346
[13] Ichikawa H 1998 J. Opt. Soc. Am . A 15 152
[14] Mur G 1981 IEEE Trans. Electromagn. Compat. 23 377
[15] Lu Y, Zhou C and Luo H 2005 J. Opt. Soc. Am . A 22 2662
[16] Luo H, Zhou C, Zou H and Lu Y 2005 Opt. Commun. 248 97
[17] Wang S et al 2005 Appl. Opt. 44 4429
[18] Goodberlet J G and Kavak H 2002 Appl. Phys. Lett. 81 1315
[19] Zhao P, Wang Y and Zhang Y 2007 J. Opt. A: Pure Appl. Opt. 9 506
[20] Jeon S, Malyarchuk V, Rogers J and Wiederrecht G P 2006 Opt. Express 14 2300
Related articles from Frontiers Journals
[1] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 094201
[2] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 094201
[3] HU Guo-Hang, ZHAO Yuan-An, LI Da-Wei, XIAO Qi-Ling. Wavelength Dependence of Laser-Induced Bulk Damage Morphology in KDP Crystal: Determination of the Damage Formation Mechanism[J]. Chin. Phys. Lett., 2012, 29(3): 094201
[4] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 094201
[5] XIANG Xia, SHI Xiao-Yan, GAO Xiao-Lin, JI Fang, WANG Ya-Jun, LIU Chun-Ming, ZU Xiao-Tao. Effect of N-Doping on Absorption and Luminescence of Anatase TiO2 Films[J]. Chin. Phys. Lett., 2012, 29(2): 094201
[6] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 094201
[7] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 094201
[8] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, WANG Bao-Jun, BIAN Jing, MA Li, YU Wen-Ke, LOU Cai-Yun . Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers[J]. Chin. Phys. Lett., 2011, 28(9): 094201
[9] GUO Yu-Bing, CHEN Yong-Hai**, XIANG Ying, QU Sheng-Chun, WANG Zhan-Guo . Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer[J]. Chin. Phys. Lett., 2011, 28(9): 094201
[10] DOU Fei, ZHANG Xin-Ping** . Charge Transfer Channels in Formation of Exciplex in Polymer Blends[J]. Chin. Phys. Lett., 2011, 28(9): 094201
[11] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 094201
[12] CHEN Heng-Zhi, YANG Bin**, SUN Yan, ZHANG Ming-Fu, WANG Zhu, ZHANG Rui, ZHANG Zhi-Guo, CAO Wen-Wu, . Optical Temperature Sensor Using Infrared-to-Visible-Frequency Upconversion in Er 3+/Yb 3+−Codoped Bi3TiNbO9 Ceramics[J]. Chin. Phys. Lett., 2011, 28(8): 094201
[13] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 094201
[14] CHEN Yi-Xin**, SHEN Guang-Di, ZHU Yan-Xu, GUO Wei-Ling, LI Jian-Jun . Efficiency-enhanced AlGaInP Light-Emitting Diodes with Thin Window Layers and Coupled Distributed Bragg Reflectors[J]. Chin. Phys. Lett., 2011, 28(6): 094201
[15] ZHANG Jin-Long, ** . Analysis of Optical Vortices in the Near Field of a Thin Metal Film[J]. Chin. Phys. Lett., 2011, 28(5): 094201
Viewed
Full text


Abstract