Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 087405    DOI: 10.1088/0256-307X/27/8/087405
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Non-Invasive Measurements of Thickness of Superconductor Films by Using Two-Resonant-Mode Rutile Resonator

JUNG Ho Sang, YANG Woo Il, LEE Jae Hun, SOHN Jae Min, CHOO Kee Nam, KIM Bong Goo, LEE Sang Young

1Department of Physics and Center for Wireless Transmission Technology, Konkuk University, Seoul 143-701, Korea 2Research Reactor Engineering Division Korea Atomic Energy Research Institute, Daejeon, 305-600, Korea
Cite this article:   
JUNG Ho Sang, YANG Woo Il, LEE Jae Hun et al  2010 Chin. Phys. Lett. 27 087405
Download: PDF(620KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The film thickness should be known for extracting the intrinsic surface resistance from the effective surface resistance as measured by using the dielectric resonator method. Thicknesses of 70 nm to 360 nm are measured for YBa2Cu3O7-δ films in a non-invasive way by using the two-resonant-mode dielectric resonator (TDR) method. A rutile resonator with the respective resonant frequencies of 15.25-15.61 GHz and 15.10-15.37 GHz for the TE021 and the TE012 modes is used for this purpose. Differences between the values as measured by using the TDR technique and those measured by using a step profilometer appear to be less than 3%, which is smaller than the previous value of 5% as measured by using a 8.6 GHz single-resonance mode rutile resonator [Lee et al. J. Korean Phys. Soc. 54(2009)1619]. Merits of using the TDR method are discussed.

Keywords: 74.25.Nf      74.78.Bz      74.72.Bk     
Received: 07 June 2010      Published: 28 July 2010
PACS:  74.25.Nf  
  74.78.Bz  
  74.72.Bk  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/087405       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/087405
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JUNG Ho Sang
YANG Woo Il
LEE Jae Hun
SOHN Jae Min
CHOO Kee Nam
KIM Bong Goo
LEE Sang Young
[1] Klein N et al 1990 J. Appl. Phys. 67 6940
[2] Lee J H, Yang W I, Kim M J, Booth J C, Leong K, Schima S, Rudman D and Lee S Y 2005 IEEE Trans. Appl. Supercond. 15 3700
[3] Willemsen B A 2001 IEEE Trans. Appl. Supercond. 11 60
[4] Ohshima S 2004 Physica C 412-414 1506
[5] Jenkins R 1999 X-Ray Fluorescence Spectrometry (New York: John Wiley & Sons) chap 2 p 17
[6] Banet J et al 1998 Appl. Phys. Lett. 73 169
[7] Wolf S and Tauber R 2000 Silicon Processing for the VLSI Era 1 (California: Lattice Press) vol 1 chap 9 p 359
[8] Lee J H, Jung H S, Han H K, Yang W I, Kim C, Lee B, Park B, Lee S Y (unpublished)
[9] Lee S Y, Jung H S and Lee J H 2009 J Korean Phys. Soc. 54 1619
[10] Kobayashi Y and Yoshikawa H 1998 IEEE Trans. Microwave Theor. Tech. 46 2524
[11] Shen Z Y et al 1992 IEEE Trans. Microwave Theor. Tech. 40 2424
[12] Krupka J et al 1993 IEEE Trans. Appl. Supercond. 3 3043
[13] Mazierska J 1997 J. Supercond. 10 73
[14] Han H K, Lee J H, Yang W I, Lee S G and Lee S Y 2006 J. Korean Phys. Soc. 48 113
[15] Kajfez D and Guillon P 1998 Dielectric Resonators (Tucker: Noble) chap 7 p 327
[16] Lee S Y, Lee J H, Yang W I, Claassen J H 2006 IEICE Trans. Electron. E89-C 132
[17] Hein M 1999 High-temperature Superconductor Thin Films at Microwave Frequencies, STMP 155 (Berlin: Springer-Verlag) chap 2 p 90
Related articles from Frontiers Journals
[1] PI Wei, WANG Yin-Shun, DONG Jin, CHEN Lei. AC Alternating-Current Loss Analyses of a Thin High-Temperature Superconducting Tube Carrying AC Transport Current in AC External Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(3): 087405
[2] CHEN Yuan-Sha, ZHANG Yan, LIAN Gui-Jun, XIONG Guang-Cheng. Fantastic Behaviour of High-TC Superconductor Junctions: Tunable Superconductivity[J]. Chin. Phys. Lett., 2009, 26(1): 087405
[3] WANG Chun-Chang, YAN Yun-Jie, ZHU Jing. Chemical Oxidation of La2CuO4 Epitaxial Thin Films Grown by Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2007, 24(6): 087405
[4] SUN Xue-Feng, YU Jing, WANG Fa, ZHANG Han. Relation of Structure and Superconductivity in Self-Compensating Y1-xCaxBa2-xLaxCu3Oy[J]. Chin. Phys. Lett., 2006, 23(8): 087405
[5] HAO Jian-Kui, LIN Lin, HUANG Sen-Lin, ZHAO Kui. Optimization of a Cryogenic System at Temperature 2K for the PKU-FEL Facility[J]. Chin. Phys. Lett., 2006, 23(10): 087405
[6] ZHAO Kun, HUANG Yan-Hong, FENG Jia-Feng, WONG Hong-Kuen. Superconducting Transition Temperature and Metal--Semiconductor Transition Temperature in YBa2Cu4O8/La0.67Ca0.33MnO3/YBa2Cu4O8 Trilayer Films[J]. Chin. Phys. Lett., 2004, 21(12): 087405
[7] XU Zhu-An, HUANG You-Xing, ZHAO Yan-Li, ZHANG Xuan-Jia, JIAO Zheng-Kuan. Anomalous Suppression of the Vortex Hall Current in Underdoped YBa2Cu3Ox[J]. Chin. Phys. Lett., 2001, 18(9): 087405
[8] XIONG Han, CHE Guang-Can, YAO Yu-Shu, NI Yong-Ming, LIU Zhen-Xing, JIA Shun-Lian, DONG Cheng, ZHAO Zhong-Xian. Superconductivity of (R0.4Pr0.6)0.5Ca0.5Ba2Cu3O7-δ (R= La, Pr, Nd, Sm, Eu, Gd and Y) Prepared Under High Pressure[J]. Chin. Phys. Lett., 2001, 18(5): 087405
[9] BAI Wei-ping, CHEN Han-dong, YIN Dao-le, LI Gang, LI Chuan-yi, CHEN Kai-xuan, LU Guo. Nonlinear Flux Diffusion and ac Susceptibility in High-Tc Superconductors[J]. Chin. Phys. Lett., 1998, 15(9): 087405
[10] YU Ya-bin, CAO Guang-han, JIAO Zheng-kuan. Investigation of Hole Distribution in Y1-xPrxBa2Cu3O7[J]. Chin. Phys. Lett., 1998, 15(7): 087405
[11] WU Zhi-jian, MENG Qing-bo, ZHANG Si-yuan. Valences of Cu in Y1-xCaxBa2Cu3O6+y[J]. Chin. Phys. Lett., 1998, 15(7): 087405
Viewed
Full text


Abstract