Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 086104    DOI: 10.1088/0256-307X/27/8/086104
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Maximal Coordinator Number of Potassium, Rubidium, Caesium and Francium Ions in Gaseous Water

MANG Chao-Yong1, WU Ke-Chen2

1Institute of Eastern-Himalaya Biodiversity Research, College of Life Science and Chemistry, Dali University, Dali 671000 2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
Cite this article:   
MANG Chao-Yong, WU Ke-Chen 2010 Chin. Phys. Lett. 27 086104
Download: PDF(387KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To understand the molecular and electronic structure of alkali metal ions, we carry out the MP2 calculation and demonstrate that the maximal coordinator numbers for the hydrated K+ and Rb+ are 8, while those for the hydrated Cs+ and Fr+ are 10. Furthermore, on the basis of the binding energy, the HOMO-LUMO gap and the electron affinity, the stability of the molecular and electronic structures of M+(H2O)8 (M = K, Rb, Cs, Fr) decreases with the increasing alkali metal atomic number and the stability of the molecular structures of M+(H2O)8-10 (M = Cs, Fr) decreases with the increasing cluster size.

Keywords: 61.46.Bc      71.20.Dg      33.15.Bh      31.15.vq     
Received: 24 February 2010      Published: 28 July 2010
PACS:  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
  71.20.Dg (Alkali and alkaline earth metals)  
  33.15.Bh (General molecular conformation and symmetry; stereochemistry)  
  31.15.vq (Electron correlation calculations for polyatomic molecules)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/086104       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/086104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MANG Chao-Yong
WU Ke-Chen
[1] Feller D 1995 J. Chem. Phys. 103 3526
[2] Glendening E D and Feller D 1995 J. Phys. Chem. 99 3060
[3] Glendening E D 1996 J. Am. Chem. Soc. 118 2473
[4] Feller D 1997 J. Phys. Chem. A 101 2723
[5] Lee H M 1999 J. Chem. Phys. 111 3995
[6] Merrill G N 2003 J. Phys. Chem. A 107 386
[7] Tanaka M and Aida M 2004 J. Solution Chem. 33 887
[8] Lee H M et al 2004 J. Phys. Chem. A 108 2949
[9] Thomas M et al 2007 Biophys. J. 93 2635
[10] Rao J S et al 2008 J. Phys. Chem. A 112 12944
[11] Glendening E D et al 1994 J. Am. Chem. Soc. 116 10657
[12] Jungwon P et al 2004 J. Chem. Phys. 121 3108
[13] Kolaski M et al 2007 J. Chem. Phys. 126 074302
[14] Varma S and Rempe S B 2007 Biophys. J. 93 1093
[15] Roothan C C J 1951 Rev. Mod. Phys. 23 69
[16] Moller C and Plesset M S 1934 Phys. Rev. 46 618
[17] Hay P J and Wadt W R 1985 J. Chem. Phys. 82 270
[18] Wadt W R and Hay P J 1985 J. Chem. Phys. 82 284
[19] Hay P J and Wadt W R 1985 J. Chem. Phys. 82 299
[20] Ermler W C et al 1991 Int. J. Quant. Chem. 40 829
[21] Boys S F and Bernardi F 1970 Mol. Phys. 19 553
[22] Frisch M J et al 2003 Gaussian 03 (Gaussian Inc., Pittsburgh, PA)
[23] Selinger A and Castleman A W 1991 J. Phys. Chem. 95 8442
[24] An H L et al 2008 Chin. Phys. Lett. 25 3165
[25] Singh N J et al 2006 Theor. Chem. Acc. 115 127
[26] Singh N J et al 2007 Supramol. Chem. 19 321
Related articles from Frontiers Journals
[1] WANG Wen-Li, XU Xin-Ye** . Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp[J]. Chin. Phys. Lett., 2011, 28(3): 086104
[2] HAO Xiao-Peng, ZHOU Chun-Lan, WANG Bao-Yi, WEI Long. Defects in Si-Rich SiO2 Films Prepared by Radio-Frequency Magnetron Co-sputtering Using Variable Energy Positron Annihilation Spectroscopy[J]. Chin. Phys. Lett., 2009, 26(4): 086104
[3] LI Guo-Jian, WANG Qiang, LIU Tie, LI Dong-Gang, LU Xiao, HE Ji-Cheng. Molecular Dynamics Simulation of Icosahedral Transformations in Solid Cu-Co Clusters[J]. Chin. Phys. Lett., 2009, 26(3): 086104
[4] JIAN Guo-Qiang, CHEN Xin, HU Zheng. A Parallel Study on (BN)n and (HAlNH)n (n=11-22) Clusters: Geometry and Stability[J]. Chin. Phys. Lett., 2009, 26(3): 086104
[5] FANG Zheng-Nong, XIE Jian-Ping, FENG Yuan-Xin, ZHANG Chu-Hang, YANG Bo, YE Gao-Xiang. AFM Study on the Formation Mechanism and Microstructure of Ni Atomic Aggregates on Liquid Substrates[J]. Chin. Phys. Lett., 2008, 25(9): 086104
[6] REN Ping, DENG Hui-Yong, ZHANG Jun-Xi, DAI Ning. Ab Initio Study of Structural and Electronic Properties of Sodium Bromide[J]. Chin. Phys. Lett., 2008, 25(1): 086104
[7] PAN Yang, CHENG Dao-Jian, HUANG Shi-Ping, WANG Wen-Chuan. Melting Behaviour of Core-Shell Structured Ag--Rh Bimetallic Clusters[J]. Chin. Phys. Lett., 2007, 24(6): 086104
[8] ZHANG Wei-Hua, LI Jia-Ming,. Theoretical Study of Photoabsorption Spectra near Si 2p Edges of Silanes: to Determine Orientations of Adsorbed Silanes[J]. Chin. Phys. Lett., 2007, 24(3): 086104
[9] CONG Shu-Lin, HAN Ke-Li, LOU Nan-Quan. Controlling the Orientation and Alignment of Reagent Molecules by a Polarized Laser[J]. Chin. Phys. Lett., 2003, 20(7): 086104
[10] SU Chang-Rong, LI Jia-Ming,. Optimum Metallic-Bond Scheme: A Quantitative Analysis of Mass Spectra of Sodium Clusters[J]. Chin. Phys. Lett., 2001, 18(12): 086104
[11] SHI Ting-yun, BAO Cheng-guang. An Analysis of the Symmetry in ABA Coulomb Systems[J]. Chin. Phys. Lett., 1998, 15(7): 086104
Viewed
Full text


Abstract