Chin. Phys. Lett.  1992, Vol. 9 Issue (8): 435-437    DOI:
Original Articles |
Lyapunov Exponent Spectrum for Two-Mode Model in Spin-Wave Chaos
HE Yuquan;CHI Ruidong;YU Jinlong
Department of Physics, Tianjin University, Tianjin 300072
Cite this article:   
HE Yuquan, CHI Ruidong, YU Jinlong 1992 Chin. Phys. Lett. 9 435-437
Download: PDF(188KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The results of numerical experiments on the two-mode model for yttrium iron garnet sphere in the parallel-pumping configuration are reported and the complete Lyapunov exponent spectrum is presented. A rather complicated structure of the Lyapunov exponent spectrum can be recognized by the appearance of the associated peak in the Kolmogorov-Sinai entropy and the Lyapunov dimension diagrams. The results confirm an important connexion between the effective number of spin-wave modes involved and the Lyapunov dimension of the attractors.
Keywords: 75.30.Ds      05.45.+b     
Published: 01 August 1992
PACS:  75.30.Ds (Spin waves)  
  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1992/V9/I8/0435
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Yuquan
CHI Ruidong
YU Jinlong
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 435-437
[2] LU Feng, SONG Yun, CHEN Dong-Meng, ZOU Liang-Jian. Orbital Order and Orbital Excitations in Degenerate Itinerant Electron Systems[J]. Chin. Phys. Lett., 2009, 26(9): 435-437
[3] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 435-437
[4] DONG Zhan-Hai. 120° Ordered Phase of Triangular Lattice Antiferromagnetic Heisenberg Model with Long Range Couplings[J]. Chin. Phys. Lett., 2009, 26(10): 435-437
[5] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 435-437
[6] WU Bao-Jian, GAO Xiang. Magnetostatic-Wave-Based Magneto-Optic Pulse Compression by Control of Phase Mismatching[J]. Chin. Phys. Lett., 2008, 25(11): 435-437
[7] WU Bao-Jian, QIU Kun. Magneto-Optic Coupling Theory for Guided Optical Waves and Magnetostatic Waves Using an Arbitrarily Tilted Bias Magnetic Field[J]. Chin. Phys. Lett., 2005, 22(9): 435-437
[8] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 435-437
[9] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 435-437
[10] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 435-437
[11] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 435-437
[12] HUANG Chen, WANG Huai-Yu, WANG En-Ge. Magnetic Behaviour of Antiferromagnetic Monolayer under an External Field[J]. Chin. Phys. Lett., 2003, 20(9): 435-437
[13] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 435-437
[14] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems[J]. Chin. Phys. Lett., 2003, 20(2): 435-437
[15] FANG Jin-Qing, YU Xing-Huo, CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method[J]. Chin. Phys. Lett., 2003, 20(12): 435-437
Viewed
Full text


Abstract