Chin. Phys. Lett.  2005, Vol. 22 Issue (2): 413-415    DOI:
Original Articles |
X-Ray Radiation Characteristics of Nested-Wire Array Implosion in Sino-Russian Joint Z-pinch Experiments on Angara-5-1
XU Rong-Kun1;LI Zheng-Hong1;NING Jia-Min1;GUO Cun1;XU Ze-Ping1;YANG Jian-Lun1;LI Lin-Bo1;XIA Guang-Xin1;HUA Xin-Sheng1;DING Ning1;LIU Qiang1;GU Yuan-Chao1;E. V. Grabovsky2;G. M. Oleynic2;S. L. Nedoseev2;V. V. Alexandrov2;K. N.Mitrofanov2;M. V. Zurin2;G. S. Volkov2;I. A. Porofeev2;I. N. Frolov2;V. P. Smirnov2
1China Academy of Engineering Physics, PO Box 919-212, Mianyang 621900 2Troitsk Institute for Innovation and Thermonuclear Researches, Troitsk 142190, Russia
Cite this article:   
XU Rong-Kun, LI Zheng-Hong, NING Jia-Min et al  2005 Chin. Phys. Lett. 22 413-415
Download: PDF(363KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report and discuss the results of x-ray radiation measurements in the Sino-Russian joint Z-Pinch experiments on Angara-5-1 facility with a load current of 2.5--3.6MA. The measurements were conducted by using an x-ray power meter (XRPM) and a time-resolved one-dimensional x-ray imaging system developed in China Academy of Engineering Physics. The experimental results indicate that an x-ray power-platform prior to a main peak and a less intensive sub-peak after the main peak in the waveform exist for the nested-wire array implosions, and the radiation process is relatively faster than that in the case of the single array. Laser shadowgraph of the imploding plasma suggests that the prior power-platform is a result of the collision of the inner-outer plasma layers. The faster radiation process of nested array implosion can be explained by analysing the corresponding result of the time-resolved one-dimensional imaging system, which demonstrates a better axial imploding uniformity and synchronization. In comparison with x-ray diode, the XRPM yields a higher height of x-ray power-platform due to its flat energy response. The sub-peak after the main peak is proposed to be a result of the later-time additional implosion of plasma.

Keywords: 52.58.Lq      52.59.Qy      52.70.La     
Published: 01 February 2005
PACS:  52.58.Lq (Z-pinches, plasma focus, and other pinch devices)  
  52.59.Qy (Wire array Z-pinches)  
  52.70.La (X-ray and γ-ray measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I2/0413
Related articles from Frontiers Journals
[1] ZHAO Yang**, WEI Min-Xi, DENG Bo, ZHU Tuo, HU Zhi-Min, XIONG Gang, SHANG Wan-Li, KUANG Long-Yu, YANG Guo-Hong, ZHANG Ji-Yan, YANG Jia-Min . Flat Crystal x-ray Spectrometer for Quantitative Spectral Measurement in the 2–5keV Region[J]. Chin. Phys. Lett., 2011, 28(6): 413-415
[2] XIONG Gang, ZHAO Yang, SHANG Wan-Li, HU Zhi-Min, ZHU Tuo, WEI Min-Xi, YANG Guo-Hong, ZHANG Ji-Yan, YANG Jia-Min. K-Shell Spectra from CH-Tamped Aluminum Layers Irradiated with Intense Femtosecond Laser Pulses[J]. Chin. Phys. Lett., 2010, 27(9): 413-415
[3] YANG Jin-Wei, ZHANG Yi-Po, LIAO Min, HU Li-Qun, LI Xu, SONG Xian-Ying, LIN Shi-Yao, LI Yong-Ge, LUO Cui-Wen, CHEN Liao-Yuan, RAO Jun, YANG Qing-Wei. Avalanche Phenomenon of Superthermal Electrons Measured by SDD with New SPHA during ECRH[J]. Chin. Phys. Lett., 2008, 25(3): 413-415
[4] JIANG Shao-En, SUN Ke-Xu, DING Yong-Kun, HUANG Tian-Xuan, CUI Yan-Li, CHEN Jiu-Sen. Radiation Temperature Scaling Law for Gold Hohlraum Heated with Lasers at 0.35mm Wavelength[J]. Chin. Phys. Lett., 2005, 22(9): 413-415
[5] QIU Xiao-Ming, HUANG Lin, JIAN Guang-De. Stabilization of Viscosity on Rayleigh-Taylor Instability in Z Pinches[J]. Chin. Phys. Lett., 2004, 21(4): 413-415
[6] TAO Ye-Zheng, LI Ye-Jun, TANG Xiu-Zhang, ZHANG Hai-Feng, SHAN Yu-Sheng, WANG Nai-Yan. Generation of Hot Electron at Higher Temperature from Solid Plasma with a Moderate-Intensity Femtosecond Laser[J]. Chin. Phys. Lett., 2002, 19(7): 413-415
[7] YANG Jin-Wei, CAO Jian-Yong, ZENG Qing-Xi, ZHANG Wei, TANG Nian-Yi, DONG Jia-Fu, DENG Zhong-Chao, XIAO Zheng-Gui, YAO Liang-Hua. Avalanche Phenomenon of Runaway Electrons During Additional Fueling[J]. Chin. Phys. Lett., 2002, 19(2): 413-415
[8] SHI Yue-Jiang, WAN Bao-Nian. Energy Resolution Effects on Plasma Electron Temperature Measurements by Soft X-Ray Pulse-Height-Analysis[J]. Chin. Phys. Lett., 2001, 18(4): 413-415
[9] LIU Timon Cheng-Yi, GUO Hong, FU Xi-Quan, HU Wei, YU Song. Maxwell-Schrödinger Equation for X-Ray Laser Propagation and Interferometry Measurement of Plasma Electron Density[J]. Chin. Phys. Lett., 2001, 18(11): 413-415
[10] XU Yan, WANG Long, ZHENG Shaobai, QI Xiazhi. Modulated Phase Lag Relations to Determine the Scaling Law of the Electron Thermal Conductivity in Tokamak[J]. Chin. Phys. Lett., 1992, 9(5): 413-415
Viewed
Full text


Abstract