Chin. Phys. Lett.  1998, Vol. 15 Issue (8): 568-570    DOI:
Original Articles |
Eigensolution of Schrödinger Equation for Harmonically Bound Two-Body Coulomb System
DUAN Yi-wu1,2;SHI Lei2;FENG Mang2;YAN Min2;ZHU Xi-wen2
1Department of Physics, Hu’nan Normal University, Changsha 410081 2Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
Cite this article:   
DUAN Yi-wu, SHI Lei, FENG Mang et al  1998 Chin. Phys. Lett. 15 568-570
Download: PDF(201KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Taking two identical ions in a Paul trap, we solved the SchrÖdinger equation for one-, two-, and three-dimensional harmonically bound two-body Coulomb models, in which the eigenfunctions are written in a series form and the eigenenergies are obtained from a continued fraction. Numerical calculations are made for specific discussion of two- and three-dimensional case. The comparison with a former one-dimensional approximate work shows that our result is more general and accurate.

Keywords: 32.80.Pj      05.30.Jp      03.75.Fi     
Published: 01 August 1998
PACS:  32.80.Pj  
  05.30.Jp (Boson systems)  
  03.75.Fi  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1998/V15/I8/0568
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DUAN Yi-wu
SHI Lei
FENG Mang
YAN Min
ZHU Xi-wen
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 568-570
[2] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 568-570
[3] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 568-570
[4] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 568-570
[5] MA Yan**, LI Tong-Bao, WU Wen, XIAO Yi-Li, ZHANG Ping-Ping, GONG Wei-Gang . Laser-Focused Atomic Deposition for Nanascale Grating[J]. Chin. Phys. Lett., 2011, 28(7): 568-570
[6] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 568-570
[7] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 568-570
[8] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 568-570
[9] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 568-570
[10] LIU Qu, , HUANG Yao, , CAO Jian, , OU Bao-Quan, , GUO Bin, **, GUAN Hua, HUANG Xue-Ren, ***, GAO Ke-Lin, *** . Frequency Measurement of the Electric Quadrupole Transition in a Single Laser-Cooled 40Ca+[J]. Chin. Phys. Lett., 2011, 28(1): 568-570
[11] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 568-570
[12] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 568-570
[13] JIA You-Hua, ZHONG Biao, YIN Jian-Ping. Two Kinds of Cavity Geometry for Enhanced Laser Cooling of Solids[J]. Chin. Phys. Lett., 2010, 27(7): 568-570
[14] CHEN Liang, , SHE Lei, LI Jiao-Mei, GAO Ke-Lin,. Kinetic Energy of Trapped Ions Cooled by Buffer Gas[J]. Chin. Phys. Lett., 2010, 27(6): 568-570
[15] DAN Lin, , YAN Hui, , WANG Jin, ZHAN Ming-Sheng,. Chip-Based Square Wave Dynamic Micro Atom Trap[J]. Chin. Phys. Lett., 2010, 27(5): 568-570
Viewed
Full text


Abstract