Chin. Phys. Lett.  1993, Vol. 10 Issue (7): 389-392    DOI:
Original Articles |
A Bäcklund Transformation of a Kind of Nonlinear Wave Equation
HAI Wenhua
Hu’nan Educational Institute, Changsha 410012
Cite this article:   
HAI Wenhua 1993 Chin. Phys. Lett. 10 389-392
Download: PDF(174KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Applying the method of canonical, transformation, we studied the nonlinear wave equation φxx - φtt = dF ( φ ) /dφ . A Bäcklund transformation (BT) of this equation is obtained. Combining BT of this equation with the well-known BT of sine-Gordon equation (SGE), a formula of nonlinear superposition which contains some arbitrary functions of x and t has been established. This formula leads to a kind of general solution of SGE through its some known solutions. The general soliton solutions and their properties are simply discussed.

Keywords: 03.40.Kf      02.30.+g      11.10.Im     
Published: 01 July 1993
PACS:  03.40.Kf  
  02.30.+g  
  11.10.Im  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1993/V10/I7/0389
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAI Wenhua
Related articles from Frontiers Journals
[1] YUAN Jin-Hui, YU Chong-Xiu, SANG Xin-Zhu, LI Wen-Jing, ZHOU Gui-Yao, LI Shu-Guang, HOU Lan-Tian. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths[J]. Chin. Phys. Lett., 2009, 26(3): 389-392
[2] ZHA Qi-Lao, LI Zhi-Bin. Periodic Wave Solutions of Generalized Derivative Nonlinear Schrödinger Equation[J]. Chin. Phys. Lett., 2008, 25(11): 389-392
[3] ZHA Qi-Lao, LI Zhi-Bin. Darboux Transformation and Multi-Solitons for Complex mKdV Equation[J]. Chin. Phys. Lett., 2008, 25(1): 389-392
[4] WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel[J]. Chin. Phys. Lett., 2007, 24(10): 389-392
[5] LIN Ji, CHENG Xue-Ping, YE Li-Jun. Soliton and Periodic Travelling Wave Solutions for Quadratic Nonlinear Media[J]. Chin. Phys. Lett., 2006, 23(1): 389-392
[6] XU You-Sheng, ZHONG Yi-Jun, HUANG Guo-Xiang. Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media[J]. Chin. Phys. Lett., 2004, 21(7): 389-392
[7] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 389-392
[8] XU You-Sheng, , LIU Yang, HUANG Guo-Xiang. Using Digital Imaging to Characterize Threshold Dynamic Parameters in Porous Media Based on Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2004, 21(12): 389-392
[9] QU Chang-Zheng, YAO Ruo-Xia, LI Zhi-Bin. Two-Component Wadati--Konno--Ichikawa Equation and Its Symmetry Reductions[J]. Chin. Phys. Lett., 2004, 21(11): 389-392
[10] ZHENG Chun-Long, , ZHANG Jie-Fang, HUANG Wen-Hua, CHEN Li-Qun. Peakon and Foldon Excitations In a (2+1)-Dimensional Breaking Soliton System[J]. Chin. Phys. Lett., 2003, 20(6): 389-392
[11] ZHANG Jie-Fang, ZHENG Chun-Long, MENG Jian-Ping, FANG Jian-Ping. Chaotic Dynamical Behaviour in Soliton Solutions for a New (2+1)-Dimensional Long Dispersive Wave System[J]. Chin. Phys. Lett., 2003, 20(4): 389-392
[12] ZHENG Chun-Long, , ZHANG Jie-Fang, SHENG Zheng-Mao. Chaos and Fractals in a (2+1)-Dimensional Soliton System[J]. Chin. Phys. Lett., 2003, 20(3): 389-392
[13] LIU Yin-Ping, LI Zhi-Bin. An Automated Algebraic Method for Finding a Series of Exact Travelling Wave Solutions of Nonlinear Evolution Equations[J]. Chin. Phys. Lett., 2003, 20(3): 389-392
[14] WANG Feng-Jiao, TANG Yi. Small Amplitude Solitons in the Higher Order Nonlinear Schrödinger Equation in an Optical Fibre[J]. Chin. Phys. Lett., 2003, 20(10): 389-392
[15] DUAN Wen-Shan, HONG Xue-Ren, SHI Yu-Ren, LU Ke-Pu, SUN Jian-An. Weakly Two-Dimensional Solitary Waves on Coupled Nonlinear Transmission Lines[J]. Chin. Phys. Lett., 2002, 19(9): 389-392
Viewed
Full text


Abstract