Chin. Phys. Lett.  1991, Vol. 8 Issue (12): 629-632    DOI:
Original Articles |
New Parameter Region for Non-propagating Solitary Waves
ZHOU Xianchu;CUI Hongnong
Laboratory for Nonlinear Continuum Mechanics, Institute of Mechanics, Academia Sinica, Beijing 100080
Cite this article:   
ZHOU Xianchu, CUI Hongnong 1991 Chin. Phys. Lett. 8 629-632
Download: PDF(156KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the consideration of surface tension, two parameter regions for non-propagating solitary waves have been found by theory and have been confirmed by experiments. The parameters mentioned up to now in all experimental and theoretical articles are all in region (1). Region (2) is never reported before.
Keywords: 47.35.+i     
Published: 01 December 1991
PACS:  47.35.+i  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1991/V8/I12/0629
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Xianchu
CUI Hongnong
Related articles from Frontiers Journals
[1] ZHANG Zheng-Di, BI Qin-Sheng . Singular Wave Solutions of Two Integrable Generalized KdV Equations[J]. Chin. Phys. Lett., 2010, 27(10): 629-632
[2] QIAN Su-Ping, TIAN Li-Xin. Modification of the Clarkson--Kruskal Direct Method for a Coupled System[J]. Chin. Phys. Lett., 2007, 24(10): 629-632
[3] SUN Xi-Ming, DONG Yu-Jie. Analysis of Stability for Gas-Kinetic Non-Local Traffic Model[J]. Chin. Phys. Lett., 2006, 23(9): 629-632
[4] XIAO Yu-Meng, TAO Zhi-Yong, WANG Xin-Long. Higher-Order Bragg Resonance in Gravity Surface Waves over Periodic Bottoms[J]. Chin. Phys. Lett., 2006, 23(7): 629-632
[5] TANG Xiao-Yan, HUANG Fei, , LOU Sen-Yue,. Variable Coefficient KdV Equation and the Analytical Diagnoses of a Dipole Blocking Life Cycle[J]. Chin. Phys. Lett., 2006, 23(4): 629-632
[6] DUAN Wen-Shan, HONG Xue-Ren, SHI Yu-Ren, LU Ke-Pu, SUN Jian-An. Weakly Two-Dimensional Solitary Waves on Coupled Nonlinear Transmission Lines[J]. Chin. Phys. Lett., 2002, 19(9): 629-632
[7] DUAN Wen-Shan. Stability of Dust Acoustic Waves in Weakly Two-Dimensional Dust Plasma with Vortex-Like Ion Distribution [J]. Chin. Phys. Lett., 2002, 19(4): 629-632
[8] DUAN Wen-Shan, LÜ, Ke-Pu, ZHAO Jin-Bao. Hot Dust Acoustic Solitary Waves in Dust Plasma with Variable Dust Charge [J]. Chin. Phys. Lett., 2001, 18(8): 629-632
[9] WANG Xin-Long, CHEN Yi-Huang, WEI Rong-Jue,. Internal Subharmonic Resonance in Faraday Experiment[J]. Chin. Phys. Lett., 2000, 17(8): 629-632
[10] WANG Xin-long, WEI Rong-jue. Synchronous Spatiotemporal Oscillation Between Two Parametrically Excited Bound States[J]. Chin. Phys. Lett., 1998, 15(4): 629-632
[11] WANG Xin-long. Dynamics of Soliton-Soliton Interactions in Parametrically-Driven Systems[J]. Chin. Phys. Lett., 1997, 14(2): 629-632
[12] CHEN Weizhong*, WEI Rongjue, WANG Benren. Chaotic Behavior of Solitary Wave in Liquid[J]. Chin. Phys. Lett., 1995, 12(11): 629-632
[13] TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation[J]. Chin. Phys. Lett., 1991, 8(6): 629-632
[14] YAN Jiaren, YOU Jianqiang. WU’S SOLITON IN A SLOPING TROUGH[J]. Chin. Phys. Lett., 1990, 7(9): 629-632
[15] HUANG Guoxiang, LOU senyue, DAI xianxi. CYLINDRICAL ENVELOPE SOLITARY WAVES[J]. Chin. Phys. Lett., 1990, 7(9): 629-632
Viewed
Full text


Abstract