Chin. Phys. Lett.  1998, Vol. 15 Issue (9): 628-630    DOI:
Original Articles |
Eigenvalues and Eigenfunctions of a Stadium-Shaped Quantum Dot Subjected to a Perpendicular Magnetic Field
LIU Bo;ZHANG Guang-cai;DAI Jian-hua;ZHANG Hong-jun
Laboratory of the Optical Physics, Institute of Physics & Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
LIU Bo, ZHANG Guang-cai, DAI Jian-hua et al  1998 Chin. Phys. Lett. 15 628-630
Download: PDF(284KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The eigenvalues and eigenfunctions of the stadium-shaped quantum dot subjected to a constant magnetic field in the perpendicular direction are computed by a simple and efficient method. With the magnetic field increasing, the nearest-neighour-energy-level-spacing distribution of the stadium-shaped quantum dot is found to transform gradually from the Wigner distribution to the Poisson distribution. The transition of the nearest-neighour-energy- level-spacing distribution indicates that system changes from quantum chaotic to regular. The variation of the spatial charge distribution indicates that the system varies from bulk Landau state to the edge state that mainly affects the transport properties of the stadium-shaped quantum dot. The change of the two dimensional charge distribution near the anticrossing point is also discussed.
Keywords: 05.45.+b      73.20.Dx     
Published: 01 September 1998
PACS:  05.45.+b  
  73.20.Dx  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1998/V15/I9/0628
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Bo
ZHANG Guang-cai
DAI Jian-hua
ZHANG Hong-jun
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 628-630
[2] A. John Peter, K. Navaneethakrishnan. Hydrogenic Donor in a Spherical Quantum Dot with Different Confinements[J]. Chin. Phys. Lett., 2009, 26(8): 628-630
[3] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 628-630
[4] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 628-630
[5] JIANG Li-Ming, WANG Hai-Long, WU Hui-Ting, GONG Qian, FENG Song-Lin. External Electric Field Effect on Hydrogenic Donor Impurity in Zinc-Blende InGaN Quantum Dot[J]. Chin. Phys. Lett., 2008, 25(8): 628-630
[6] A. John Peter, Vemuri Lakshminarayana. Effects of Electric Field on Electronic States in a GaAs/GaAlAs Quantum Dot with Different Confinements[J]. Chin. Phys. Lett., 2008, 25(8): 628-630
[7] Emine OZTURK, Ismail SOKMEN. Electronic Properties of p-Type δ-Doped GaAs Structure under Electric Field[J]. Chin. Phys. Lett., 2008, 25(4): 628-630
[8] E. Kasapoglu, M. Gunes, I. Sokmen. Effect of Hydrostatic Pressure on Interband Transitions in Coupled Quantum Wires[J]. Chin. Phys. Lett., 2007, 24(4): 628-630
[9] XIE Wen-Fang. Ground State of a Two-Electron Quantum Dot with a Gaussian Confining Potential[J]. Chin. Phys. Lett., 2006, 23(1): 628-630
[10] WANG Zhi-Ping, LIANG Xi-Xia,. Polaron Energy and Effective Mass in Parabolic Quantum Wells[J]. Chin. Phys. Lett., 2005, 22(9): 628-630
[11] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 628-630
[12] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 628-630
[13] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 628-630
[14] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 628-630
[15] E. Kasapoglu, H. Sari, I.Sö, kmen. Effects of Crossed Electric and Magnetic Fields on Shallow Donor Impurity Binding Energy in a Parabolic Quantum Well[J]. Chin. Phys. Lett., 2004, 21(12): 628-630
Viewed
Full text


Abstract