Chin. Phys. Lett.  2010, Vol. 27 Issue (4): 044401    DOI: 10.1088/0256-307X/27/4/044401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials

DONG Xi-Jie1,2, HU Yi-Fan2, WU Yu-Ying1, ZHAO Jun3, WAN Zhen-Zhu4

1Wuhan High Magnetic Field Center, Huazhong University ofScience and Technology, Wuhan 4300742School of Physics, Huazhong University of Science and Technology,Wuhan 430074375310 Army, 25 Zhongnan Road, Wuhan 4300714School of Mathematics~and Physics, China University of Geosciences,Wuhan, 430074
Cite this article:   
DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying et al  2010 Chin. Phys. Lett. 27 044401
Download: PDF(462KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We establish a new model based on fractal theory and cubic spline interpolation to study the effective thermal conductivity of isotropic porous silica low-k materials. A 3D fractal model is introduced to describe the structure of the silica xerogel and silica hybrid materials (such as methylsilsesquioxane, MSQ). Combined with fractal structure, a more suitable medium approximation is developed to study the isotropic porous silica xerogel and MSQ materials. Cubic spline interpolation for fitting discrete predictions from the fractal model is used to obtain the continuous function of the effective thermal conductivity versus porosity. Compared with other common models, the effective thermal conductivity predicted by our model presents better agreement with the experimental data for all porosity. These results indicate that the proposed model is valid.

Keywords: 44.30.+v      78.55.Mb      05.45.Df     
Received: 26 November 2009      Published: 27 March 2010
PACS:  44.30.+v (Heat flow in porous media)  
  78.55.Mb (Porous materials)  
  05.45.Df (Fractals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/4/044401       OR      https://cpl.iphy.ac.cn/Y2010/V27/I4/044401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Xi-Jie
HU Yi-Fan
WU Yu-Ying
ZHAO Jun
WAN Zhen-Zhu
[1] Endo K and Tatsumi T 1996 Appl. Phys. Lett. 68 2864
[2] Mor Y S, Chang T C, Liu P T, Tsai T M, Chen C W, Yan S T, Chu C J, Wu W F, Pan F M, Lur W and Sze S M 2002 J. Vac. Sci. Technol. B 20 1334
[3] Hu Y F, Sun J N and Gidley D W 2005 Chin. Phys. Lett. 22 1488
[4] Maier G 2001 Prog. Polym. Sci. 26 3
[5] Maex K, Baklanov M R, Shamiryan D, Iacopi F, Brongersma S H and Yanovitskaya Z S 2003 J. Appl. Phys. 93 8793
[6] Yang S, Mirau P A, Pai C S, Nalamasu O, Reichmanis E, Pai J C, Obeng Y S, Seputro J, Lin E K, Lee H J, Sun J and Gidley D W 2002 Chem. Mater. 14 369
[7] Yang S, Mirau P, Pai C S, Nalamasu O, Reichmanis E, Lin E K, Lee H J, Gidley D W, Sun J 2001 Chem. Mater. 13 2762
[8] Nguyen C V et al 1999 Chem. Mater. 11 3080
[9] Hu C, Morgen M, Ho P S, Jain A, Gill W N, Plawsky J L and Wayner P C 2000 Appl. Phys. Lett. 77 145
[10] Katz A J and Thompson A H 1985 Phys. Rev. Lett. 54 1325
[11] Young I M and Crawford J W 1991 J. Soil Sci. 42 187
[12] Smidt J M and Monro D M 1998 Fractals 6 401
[13] Yu B M and Li J H 2001 Fractals 9 365
[14] Thovert J F, Wary F and Adler P M 1990 J. Appl. Phys. 68 3872
[15] Adler P M 1996 J. Hydrology 187 195
[16] Cai J C, Yu B M, Zou M Q and Mei M F 2010 Chin. Phys. Lett . 27 024705
[17] Bruggeman D A G 1935 Ann. Phys. (Leipzig) 24 634
[18] Carson J K, Lovatt S J, Tanner D J and Cleland A C 2005 Int. J. Heat Mass Transfer 48 2150
[19] Tang Y N, Yu B M, Hu Y F, Cai J C, Feng Y J and Xu P 2007 J. Phys. D 40 5377
[20] Mayama H and Tsujii K 2006 J. chem. Phys. 125 124706
[21] Stoer J and Bulirsch R 2002 Introduction to Numerical Analysis (New York: Springer) p 752
[22] Ramos T, Roderick K, Maskara A, Smith D M 1997 Materials Research Society Symposium Proceedings 443 91
[23] Hoinkis E, Rohl-kuhn B 2005 Langmuir 21 7366
[24] Liu J J, Gan D W, Hu C, Kiene M, Ho P S, Volksen W, Miller R D 2002 Appl. Phys. Lett. 81 4180
[25] Smaihi M, Jermoumi T and Marignan J 1995 Chem. Mater. 7 2293
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 044401
[2] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 044401
[3] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 044401
[4] ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran**, YANG Zhong-Xi, SUN Chun-Jing . Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt[J]. Chin. Phys. Lett., 2011, 28(12): 044401
[5] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 044401
[6] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 044401
[7] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 044401
[8] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 044401
[9] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 044401
[10] GUO Long, CAI Xu. The Fractal Dimensions of Complex Networks[J]. Chin. Phys. Lett., 2009, 26(8): 044401
[11] WU Jin-Sui, YIN Shang-Xian, ZHAO Dong-Yu. A Particle Resistance Model for Flow through Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 044401
[12] HUANG Shou-Fang, ZHANG Ji-Qian, DING Shi-Jiang. State-to-State Transitions in a Hindmarsh-Rose Neuron System[J]. Chin. Phys. Lett., 2009, 26(5): 044401
[13] JIANG Zhi-Qiang, , ZHOU Wei-Xing, ,. Direct Evidence for Inversion Formula in Multifractal Financial Volatility Measure[J]. Chin. Phys. Lett., 2009, 26(2): 044401
[14] ZHANG Jie, XU Shao-Hui, YANG Shi-Qian, WANG Lian-Wei, CAO Zhi-Shen, ZHAN Peng, WANG Zhen-Lin. A Stable Porous Silicon Dielectric Reflector with a Photonic Band Gap Centred at 10μm[J]. Chin. Phys. Lett., 2008, 25(4): 044401
[15] GE Jin, YIN Wen-Jing, LONG Yong-Fu, DING Xun-Min, HOU Xiao-Yuan. Positive and Negative Pulse Etching Method of Porous Silicon Fabrication[J]. Chin. Phys. Lett., 2007, 24(5): 044401
Viewed
Full text


Abstract