FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Coupled THz Waveguide Utilizing Surface Plasmon Polaritons on Thin Dielectric Slab Sandwiched between Two Corrugated Metallic Claddings |
TIAN Dong-Bin, ZHANG Huai-Wu, WEN Qi-Ye, XIE Yun-Song, SONG Yuan-Qiang |
State Key Laboratory of Electronic Thin Films and IntegratedDevices, School of Microelectronic and Solid-state Electronic, Universityof Electronic Science and Technology of China, Chengdu 610054 |
|
Cite this article: |
TIAN Dong-Bin, ZHANG Huai-Wu, WEN Qi-Ye et al 2010 Chin. Phys. Lett. 27 044211 |
|
|
Abstract We present a comprehensive experimental study of terahertz (THz) wave propagation utilizing surface plasmon polaritons (SPPs) on the interfaces of a thin dielectric core layer sandwiched between two corrugated metallic claddings. THz wave impinges on the structured surfaces at normal incidence. Long-lasting oscillation propagation features are observed in the temporal waveform after traveling through the periodic arrays. The enhanced THz transmission can be achieved due to the coupling between incident waves to SPPs at the bottom and top interfaces. The finite element method is used to simulate the field distribution and the transmission mode in the waveguide. The hybrid waveguide with low absorption has great potential applications in THz integrated devices.
|
Keywords:
42.79.Gn
42.25.Bs
78.66.Bz
78.68.+m
|
|
Received: 09 September 2009
Published: 27 March 2010
|
|
PACS: |
42.79.Gn
|
(Optical waveguides and couplers)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
78.66.Bz
|
(Metals and metallic alloys)
|
|
78.68.+m
|
(Optical properties of surfaces)
|
|
|
|
|
[1] Tonouchi M 2007 Nature 1 86 [2] Michael N, Astrid M and Heinrich K 2006 Opt. Express 14 9944 [3] Withayachumnankul W, Png G M, Yin X X, Atakaramians S, Jones I L, Ung H Y S Y, Balakrishnan J, Ng B W H, Ferguson B, Mickan S P, Fischer B M and Abbott D 2007 Proc. IEEE 95 1528 [4] Wang K L and Mittleman D M 2004 Nature 432 376 [5] Maier S A 2007 Plasmonics-Fundamentals and Applications (New York: Springer) chap 2 p30 [6] Wang Y, Wu Y D, Zhang J S and Hu X W 2008 Chin. Phys. Lett. 25 4023 [7] Zhang Y L, Zhao D Y, Zhou CH and Jiang X Y 2008 Chin. Phys. Lett. 25 168 [8] Maier S A, Andrews S R, Martin-Moreno L and Garcia-Vidal F J 2006 Phys. Rev. Lett . 97 176805 [9] Oulton R F, Sjorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon 2 496 [10] Rivas J G 2008 Nat. Photon 2 137 [11] Nick C J, Paul V V and Planken C M 2005 Appl. Phys. Lett. 87 071106 [12] Shen L, Chen X, Zhong Y and Agarwal A K 2008 Phys. Rev. B 77 075408 [13] Ji Y B, Lee E S, Jang J S and Jeon T I 2008 Opt. Express 16 271 [14] Deibela J A, Wang K L, Escarraa M, Berndsena N and Mittleman D M 2008 C. R. Physique 9 215 [15] Pierre B, Robert C, Stephanie J C, Nancy L and Greg M 2007 J. Appl. Phys. 101 113114 [16] Lai C J, Lee C H, G. Hsu C I and Kiang J F 2006 IEICE Trans. Electron. E89-C 395 [17] Maier S A and Andrews S R 2006 Appl. Phys. Lett. 88 251120 [18] Michael M, Juraj D, Karl U and Erich G 2009 J. Opt. Soc. Am. B 26 554 [19] Hibbins A P, Evans B R and Sambles J R 2005 Science 308 670 [20] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824 [21] Cao Y, Wang P, Min C J, Lu Y H, Yuan G H and Ming H 2008 Chin. Phys. Lett. 25 2104 [22] Zhang Z Y, Huang P, Guo X W, Wang J Q, Fang L, Du J L, Luo X G and Du C L 2008 Chin. Phys. Lett. 25 996 [23] Zhao Y G and Grischkowsky D R 2007 IEEE Trans. Microwave Theor. Technol. 55 656 [24] Wachter M, Nagel M and Kurz H 2008 Appl. Phys. Lett. 92 161102 [25] Hendry E, Garcia-Vidal F J, Martin-Moreno L, Rivas J G, Bonn M, Hibbins A P and Lockyear M J, 2008 Phys. Rev. Lett. 100 123901 [26] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|