Chin. Phys. Lett.  1999, Vol. 16 Issue (10): 740-741    DOI:
Original Articles |
High Velocity Acoustical Head Wave on Surface of ST Quartz
WANG Cheng-hao;LIU Yuan;HE Shi-tang;HUANG Xin
Institute of Acoustics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
WANG Cheng-hao, LIU Yuan, HE Shi-tang et al  1999 Chin. Phys. Lett. 16 740-741
Download: PDF(185KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract According to surface transient excitation theory of elastic wave for piezoelectric crystal, in the surface of a piezoelectric crystal can exist acoustical high velocity head wave except the general surface acoustic wave (SAW). Such a mode is to propagate with the group velocity of the longitudinal bulk wave along the crystal surface. For ST quartz its value is 5.744xl03m/s, which agrees with our experiments. The fact that the longitudinal head wave mode has a high propagation velocity offers potential applications for high frequency SAW devices.
Keywords: 43.35.Pt      77.65.Dq      43.20.Jr     
Published: 01 October 1999
PACS:  43.35.Pt (Surface waves in solids and liquids)  
  77.65.Dq (Acoustoelectric effects and surface acoustic waves (SAW) in piezoelectrics)  
  43.20.Jr (Velocity and attenuation of elastic and poroelastic waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1999/V16/I10/0740
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Cheng-hao
LIU Yuan
HE Shi-tang
HUANG Xin
Related articles from Frontiers Journals
[1] DEBBOUB Salima**,BOUMAÏ, ZA Youcef,BOUDOUR Amar,TAHRAOUI Tarek. Attenuation of Rayleigh Surface Waves in a Porous Material[J]. Chin. Phys. Lett., 2012, 29(4): 740-741
[2] LI Xiu-Ming, ZHANG Rui, HUANG Nai-Xing, LÜ, Tian-Quan, CAO Wen-Wu. Surface Acoustic Wave Propagation in Relaxor-Based Ferroelectric Single Crystals 0.93Pb(Zn1/3Nb2/3)O3−0.07PbTiO3 Poled along [011]c[J]. Chin. Phys. Lett., 2012, 29(2): 740-741
[3] LI Yong, HOU Zhi-Lin, FU Xiu-Jun, Badreddine M Assouar. Symmetric and Anti-Symmetric Lamb Waves in a Two-Dimensional Phononic Crystal Plate[J]. Chin. Phys. Lett., 2010, 27(7): 740-741
[4] ZHANG Wei, LI Xiu-Ming, ZHANG Rui, HUANG Nai-Xing, CAO Wen-Wu,. Numerical Calculation of SAW Propagation Properties at the x-Cut of Ferroelectric PMN-33%PT Single Crystals[J]. Chin. Phys. Lett., 2009, 26(6): 740-741
[5] LIANG Bin, CHENG Jian-Chun. Optimal Acoustic Attenuation of Weakly Compressible Media Permeated with Air Bubbles[J]. Chin. Phys. Lett., 2007, 24(6): 740-741
[6] QIAO Dong-Hai, WANG Cheng-Hao, WANG Zuo-Qing. Focusing of Surface Acoustic Wave on a Piezoelectric Crystal[J]. Chin. Phys. Lett., 2006, 23(7): 740-741
[7] ZHANG Ting, , WANG Yu, LIU Wei-Li, CHENG Jian-Gong, SONG Zhi-Tang, FENG Song-Lin, CHAN-WONG Lai-Wa Helen, CHOY Chung-Loong. Fabrication and Characterization of ZnO-Based Film Bulk Acoustic Resonator with a High Working Frequency[J]. Chin. Phys. Lett., 2005, 22(3): 740-741
[8] NIE Jian-Xin, YANG Ding-Hui, YANG Hui-Zhu. Wave Dispersion and Attenuation in Partially Saturated Sandstones[J]. Chin. Phys. Lett., 2004, 21(3): 740-741
[9] LIU Ying, LIU Kai-Xin, GAO Ling-Tian. Fronts of Stress Waves in Anisotropic Piezoelectric Media[J]. Chin. Phys. Lett., 2004, 21(1): 740-741
[10] WU Fu-Gen, LIU Zheng-You, LIU You-Yan. Stop Gaps and Single Defect States of Acoustic Waves in Two-Dimensional Lattice of Liquid Cylinders[J]. Chin. Phys. Lett., 2001, 18(6): 740-741
[11] CHEN Zhen, LU Da-Cheng, WANG Xiao-Hui, LIU Xiang-Lin, HAN Pei-De, YUAN Hai-Rong, WANG Du, WANG Zhan-Guo, HE Shi-Tang, LI Hong-Lang, YAN Li, CHEN Xiao-Yang. Surface Acoustic Wave Velocity and Electromechanical Coupling Coefficient of GaN Grown on (0001) Sapphire by Metal-Organic Vapor Phase Epitaxy[J]. Chin. Phys. Lett., 2001, 18(10): 740-741
[12] TONG Xiao-Jun, WANG Wei-Biao, ZHOU Ran, ZHANG De, QIN Hou-Rong. Propagation Properties of Quasi-longitudinal Leaky Surface Acoustic Wave on Y-Rotated Cut Quartz Substrates[J]. Chin. Phys. Lett., 2000, 17(9): 740-741
[13] WANG Xin-Long, CHEN Yi-Huang, WEI Rong-Jue,. Internal Subharmonic Resonance in Faraday Experiment[J]. Chin. Phys. Lett., 2000, 17(8): 740-741
Viewed
Full text


Abstract