CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Systematical High-Pressure Study of Praseodymium Nitrides in N-Rich Region |
Ran Liu, Shuang Liu, Ying Zhang*, Peng Wang*, and Zhen Yao* |
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China |
|
Cite this article: |
Ran Liu, Shuang Liu, Ying Zhang et al 2024 Chin. Phys. Lett. 41 066301 |
|
|
Abstract We investigate high-pressure phase diagrams of Pr–N compounds by proposing five stable structures ($Pnma$-PrN, $I4/mmm$-PrN$_{2}$, $C2/m$-PrN$_{3}$, $P\bar{1}$-PrN$_{4}$, and $R3$-PrN$_{8})$ and two metastable structures ($P\bar{1}$-PrN$_{6}$ and $P\bar{1}$-PrN$_{10}$). The $P\bar{1}$-PrN$_{6}$ with the N$_{14}$-ring layer and $R3$-PrN$_{8}$ with the N$_{18}$-ring layer can be quenched to ambient conditions. For the $P\bar{1}$-PrN$_{10}$, the N$_{22}$-ring layer structure transfers into infinite chains with the pressure quenched to ambient pressure. Remarkably, a novel polynitrogen $hR8$-N designed by the excision of Pr atoms from $R3$-PrN$_{8}$ is obtained and can be quenched to ambient conditions. The N-rich structures of $P\bar{1}$-PrN$_{6}$, $R3$-PrN$_{8}$, c-PrN$_{10}$ and the solid pure nitrogen structure exhibit outstanding properties of energy density and explosive performance.
|
|
Received: 15 April 2024
Published: 20 June 2024
|
|
PACS: |
63.20.dk
|
(First-principles theory)
|
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
|
|
|
[1] | Nellis W J, Radousky H B, Hamilton D C, Mitchell A C, Holmes N C, Christianson K B, and van Thiel M 1991 J. Chem. Phys. 94 2244 |
[2] | Mailhiot C, Yang L H, and McMahan A K 1992 Phys. Rev. B 46 14419 |
[3] | Zahariev F, Hooper J, Alavi S, Zhang F, and Woo T K 2007 Phys. Rev. B 75 140101 |
[4] | Sun M, Yin Y H, and Pang Z K 2015 Comput. Mater. Sci. 98 399 |
[5] | Kotakoski J and Albe K 2008 Phys. Rev. B 77 144109 |
[6] | Lewis S P and Cohen M L 1992 Phys. Rev. B 46 11117 |
[7] | Zahariev F, Hu A, Hooper J, Zhang F, and Woo T 2005 Phys. Rev. B 72 214108 |
[8] | Ma Y M, Oganov A R, Li Z W, Xie Y, and Kotakoski J 2009 Phys. Rev. Lett. 102 065501 |
[9] | Wang X L, He Z, Ma Y M, Cui T, Liu Z M, Liu B B, Li J F, and Zou G T 2007 J. Phys.: Condens. Matter 19 425226 |
[10] | Bondarchuk S V and Minaev B F 2017 Comput. Mater. Sci. 133 122 |
[11] | Wang X L, Tian F B, Wang L C, Cui T, Liu B B, and Zou G T 2010 J. Chem. Phys. 132 024502 |
[12] | Mattson W D, Sanchez-Portal D, Chiesa S, and Martin R M 2004 Phys. Rev. Lett. 93 125501 |
[13] | Wang X L, Wang Y C, Miao M S, Zhong X, Lv J, Cui T, Li J F, Chen L, Pickard C J, and Ma Y M 2012 Phys. Rev. Lett. 109 175502 |
[14] | Greschner M J, Zhang M, Majumdar A, Liu H Y, Peng F, Tse J S, and Yao Y S 2016 J. Phys. Chem. A 120 2920 |
[15] | Liu S J, Zhao L, Yao M G, Miao M S, and Liu B B 2020 Adv. Sci. 7 1902320 |
[16] | Zhao L, Liu S J, Chen Y Z, Yi W C, Khodagholian D, Gu F L, Kelson E, Zheng Y H, Liu B B, and Miao M S 2022 Dalton Trans. 51 9369 |
[17] | Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, and Boehler R 2004 Nat. Mater. 3 558 |
[18] | Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, and Mao H K 2020 Sci. Adv. 6 eaba9206 |
[19] | Liu Y, Su H P, Niu C P, Wang X L, Zhang J R, Ge Z X, and Li Y C 2020 Chin. Phys. B 29 106201 |
[20] | Tomasino D, Kim M, Smith J, and Yoo C S 2014 Phys. Rev. Lett. 113 205502 |
[21] | Laniel D, Geneste G, Weck G, Mezouar M, and Loubeyre P 2019 Phys. Rev. Lett. 122 066001 |
[22] | Lei L, Tang Q Q, Zhang F, Liu S, Wu B B, and Zhou C Y 2020 Chin. Phys. Lett. 37 068101 |
[23] | Ding C, Wang J J, Han Y, Yuan J N, Gao H, and Sun J 2022 Chin. Phys. Lett. 39 036101 |
[24] | Wang D X, Fu J, Li Y, Yao Z, Liu S, and Liu B B 2024 Chin. Phys. Lett. 41 036101 |
[25] | Chen G, Niu C P, Xia W M, Zhang J, Zeng Z, and Wang X L 2023 Chin. Phys. Lett. 40 086102 |
[26] | Zhai Z Y, Chen G, Zhang J, Wang X L, and Zeng Z 2023 AIP Adv. 13 055324 |
[27] | Williams A S, Steele B A, and Oleynik I I 2017 J. Chem. Phys. 147 234701 |
[28] | Medvedev S A, Trojan I A, Eremets M I, Palasyuk T, Klapötke T M, and Evers J 2009 J. Phys.: Condens. Matter 21 195404 |
[29] | Wang X L, Li J F, Zhu H Y, Chen L, and Lin H Q 2014 J. Chem. Phys. 141 044717 |
[30] | Eremets M I, Popov M Y, Trojan I A, Denisov V N, Boehler R, and Hemley R J 2004 J. Chem. Phys. 120 10618 |
[31] | Ji C, Zheng R, Hou D B, Zhu H Y, Wu J Z, Chyu M C, and Ma Y Z 2012 J. Appl. Phys. 111 112613 |
[32] | Zhu S S, Peng F, Liu H Y, Majumdar A, Gao T, and Yao Y S 2016 Inorg. Chem. 55 7550 |
[33] | Wei S L, Li D, Liu Z, Li X, Tian F B, Duan D F, Liu B B, and Cui T 2017 Phys. Chem. Chem. Phys. 19 9246 |
[34] | Zhang S T, Zhao Z Y, Liu L L, and Yang G C 2017 J. Power Sources 365 155 |
[35] | Huang B W and Frapper G 2018 Chem. Mater. 30 7623 |
[36] | Wei S L, Lian L L, Liu Y, Li D, Liu Z, and Cui T 2020 Phys. Chem. Chem. Phys. 22 5242 |
[37] | Shi X H, Liu B, Yao Z, and Liu B B 2020 Chin. Phys. Lett. 37 047101 |
[38] | Liu Z, Li D, Tian F B, Duan D F, Li H D, and Cui T 2020 Inorg. Chem. 59 8002 |
[39] | Liu S, Liu R, Li H Y, Yao Z, Shi X H, Wang P, and Liu B B 2021 Inorg. Chem. 60 14022 |
[40] | Steele B A and Oleynik I I 2017 J. Phys. Chem. 121 8955 |
[41] | Wang F X, Rui Q, Jiang Q W, Li J F, Zhu H Y, Wang Q L, and Wang X L 2022 Solid State Commun. 358 115001 |
[42] | Jin B, Liu Y Y, Yao Z, Liu S, and Wang P 2023 Dalton Trans. 52 14142 |
[43] | Wang Y Y, Li Z H, Li R X, Li Y, Liu S, Yao Z, and Liu B B 2023 Inorg. Chem. 62 11674 |
[44] | Miao J Y, Lu Z S, Peng F, and Lu C 2021 Chin. Phys. Lett. 38 066201 |
[45] | Bykov M, Bykova E, Ponomareva A V, Abrikosov I A, Chariton S, Prakapenka V B, Mahmood M F, Dubrovinsky L, and Goncharov A F 2021 Angew. Chem. Int. Ed. 60 9003 |
[46] | Bykov M, Fedotenko T, Chariton S, Laniel D, Glazyrin K, Hanfland M, Smith J S, Prakapenka V B, Mahmood M F, Goncharov A F, Ponomareva A V, Tasnádi F, Abrikosov A I, Bin Masood T, Hotz I, Rudenko A N, Katsnelson M I, Dubrovinskaia N, Dubrovinsky L, and Abrikosov I A 2021 Phys. Rev. Lett. 126 175501 |
[47] | Bykov M, Khandarkhaeva S, Fedotenko T, Sedmak P, Dubrovinskaia N, and Dubrovinsky L 2018 Acta Crystallogr. Sect. E: Crystallogr. Commun. 74 1392 |
[48] | Laniel D, Aslandukova A A, Aslandukov A N, Fedotenko T, Chariton S, Glazyrin K, Prakapenka V B, Dubrovinsky L S, and Dubrovinskaia N 2021 Inorg. Chem. 60 14594 |
[49] | Laniel D, Weck G, Gaiffe G, Garbarino G, and Loubeyre P 2018 J. Phys. Chem. Lett. 9 1600 |
[50] | Laniel D, Weck G, and Loubeyre P 2018 Inorg. Chem. 57 10685 |
[51] | Steele B A, Stavrou E, Crowhurst J C, Zaug J M, Prakapenka V B, and Oleynik I I 2017 Chem. Mater. 29 735 |
[52] | Aslandukov A, Trybel F, Aslandukova A, Laniel D, Fedotenko T, Khandarkhaeva S, Aprilis G, Giacobbe C, Bright E L, Abrikosov I A, Dubrovinsky L, and Dubrovinskaia N 2022 Angew. Chem. Int. Ed. 61 e202207469 |
[53] | Bykov M, Chariton S, Bykova E, Khandarkhaeva S, Fedotenko T, Ponomareva A V, Tidholm J, Tasnádi F, Abrikosov I A, Sedmak P, Prakapenka V, Hanfland M, Liermann H P, Mahmood M, Goncharov A F, Dubrovinskaia N, and Dubrovinsky L 2020 Angew. Chem. Int. Ed. 59 10321 |
[54] | Li K Y and Xue D F 2009 Chin. Sci. Bull. 54 328 |
[55] | Sclar N 1962 J. Appl. Phys. 33 2999 |
[56] | Duan C G, Sabirianov R F, Mei W N, Dowben P A, Jaswal S S, and Tsymbal E Y 2007 J. Phys.: Condens. Matter 19 315220 |
[57] | Larson P, Lambrecht W R L, Chantis A, and van Schilfgaarde M 2007 Phys. Rev. B 75 045114 |
[58] | Murugan A, Sudha Priyanga G, Rajeswarapalanichamy R, and Iyakutti K 2016 Mater. Sci. Semicond. Process. 41 17 |
[59] | Galler A and Pourovskii L V 2022 New J. Phys. 24 043039 |
[60] | Didchenko R and Gortsema F P 1963 J. Phys. Chem. Solids 24 863 |
[61] | Imamura H, Imahashi T, Zaimi M, and Sakata Y 2008 J. Alloys Compd. 451 636 |
[62] | Cynn H, Lipp M, Evans W, and Ohishi Y 2010 J. Phys.: Conf. Ser. 215 012010 |
[63] | Wang Y C, Lv J, Zhu L, and Ma Y M 2012 Comput. Phys. Commun. 183 2063 |
[64] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[65] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[66] | Anisimov V I, Zaanen J, and Andersen O K 1991 Phys. Rev. B 44 943 |
[67] | Kaderoglu C, Surucu G, and Erkisi A 2017 J. Electron. Mater. 46 5827 |
[68] | Lanatà N, Yao Y X, Wang C Z, Ho K M, and Kotliar G 2015 Phys. Rev. X 5 011008 |
[69] | Dabhi S D and Jha P K 2015 Polymer 81 45 |
[70] | Deringer V L, Tchougréeff A L, and Dronskowski R 2011 J. Phys. Chem. A 115 5461 |
[71] | Maintz S, Deringer V L, Tchougréeff A L, and Dronskowski R 2016 J. Comput. Chem. 37 1030 |
[72] | Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 |
[73] | Chesnut G N and Vohra Y K 2000 Phys. Rev. B 62 2965 |
[74] | Evans S R, Loa I, Lundegaard L F, and McMahon M I 2009 Phys. Rev. B 80 134105 |
[75] | Gregoryanz E, Goncharov A F, Sanloup C, Somayazulu M, Mao H K, and Hemley R J 2007 J. Chem. Phys. 126 184505 |
[76] | Bini R, Ulivi L, Kreutz J, and Jodl H J 2000 J. Chem. Phys. 112 8522 |
[77] | Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 125702 |
[78] | Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 |
[79] | Henkelman G, Arnaldsson A, and Jónsson H 2006 Comput. Mater. Sci. 36 354 |
[80] | Tang W, Sanville E, and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204 |
[81] | Hou J Y, Weng X J, Oganov A R, Shao X, Gao G Y, Dong X, Wang H T, Tian Y J, and Zhou X F 2021 Phys. Rev. B 103 L060102 |
[82] | Lin S Y, Xu M L, Hao J, and Li Y W 2022 Results Phys. 43 106093 |
[83] | Liu L L, Zhang S T, and Zhang H J 2022 Chin. Phys. Lett. 39 056102 |
[84] | Wang B S, Guégan F, and Frapper G 2022 J. Mater. Chem. C 10 10374 |
[85] | Li Y W, Feng X L, Liu H Y, Hao J, Redfern S A T, Lei W W, Liu D, and Ma Y M 2018 Nat. Commun. 9 722 |
[86] | Kamlet M J and Dickinson C 1968 J. Chem. Phys. 48 43 |
[87] | Zhang L J, Wang Y C, Lv J, and Ma Y M 2017 Nat. Rev. Mater. 2 17005 |
[88] | Stierstorfer J and Klapötke T M 2010 Angew. Chem. 49 6253 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|