FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Modulation of High-Order Harmonic Generation from a Monolayer ZnO by Co-rotating Two-Color Circularly Polarized Laser Fields |
Yue Qiao1,2,3, Jiaqi Chen1, Shushan Zhou4, Jigen Chen1*, Shicheng Jiang5*, and Yujun Yang2,3* |
1School of Materials Science and Engineering, Taizhou University, Jiaojiang 318000, China 2Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China 3Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), Changchun 130012, China 4School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China 5State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
|
|
Cite this article: |
Yue Qiao, Jiaqi Chen, Shushan Zhou et al 2024 Chin. Phys. Lett. 41 014205 |
|
|
Abstract By numerically solving the two-dimensional semiconductor Bloch equation, we study the high-order harmonic emission of a monolayer ZnO under the driving of co-rotating two-color circularly polarized laser pulses. By changing the relative phase between the fundamental frequency field and the second one, it is found that the harmonic intensity in the platform region can be significantly modulated. In the higher order, the harmonic intensity can be increased by about one order of magnitude. Through time-frequency analysis, it is demonstrated that the emission trajectory of monolayer ZnO can be controlled by the relative phase, and the harmonic enhancement is caused by the second quantum trajectory with the higher emission probability. In addition, near-circularly polarized harmonics can be generated in the co-rotating two-color circularly polarized fields. With the change of the relative phase, the harmonics in the platform region can be altered from left-handed near-circularly polarization to right-handed one. Our results can obtain high-intensity harmonic radiation with an adjustable ellipticity, which provides an opportunity for syntheses of circularly polarized attosecond pulses.
|
|
Received: 04 December 2023
Published: 16 January 2024
|
|
PACS: |
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
42.25.Ja
|
(Polarization)
|
|
|
|
|
[1] | Yuan H Y, Yang Y J, Guo F M, Wang J, Chen J G, Feng W, and Cui Z W 2023 Opt. Express 31 24213 |
[2] | Yuan H Y, Yang Y J, Guo F M, Wang J, and Cui Z W 2022 Opt. Express 30 19745 |
[3] | Li X F, Qiao Y, Wu D, Yu R X, Chen J G, Wang J, Guo F M, and Yang Y J 2024 Chin. Phys. B 33 013302 |
[4] | Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A, and Corkum P B 1994 Phys. Rev. A 49 2117 |
[5] | Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, and Reis D A 2016 Nature 534 520 |
[6] | Zeng A W and Bian X B 2020 Phys. Rev. Lett. 124 203901 |
[7] | Yuan G L, Lu R F, Jiang S C, and Dorfman K 2023 Ultrafast Sci. 3 0040 |
[8] | Jiang S C and Dorfman K 2020 Proc. Natl. Acad. Sci. USA 117 9776 |
[9] | Yue L and Gaarde M B 2022 J. Opt. Soc. Am. B 39 535 |
[10] | Fu T T, Zhou S S, Chen J G, Wang J, Guo F M, and Yang Y J 2023 Opt. Express 31 30171 |
[11] | Fu T T, Qiao Y, Wang J, Guo F M, and Yang Y 2023 Phys. Rev. A 108 033115 |
[12] | Qiao Y, Wang X, Li X, Wu L, Yu R, Guo F, Wang J, Chen J, and Yang Y 2023 Opt. Express 31 36327 |
[13] | Jia G R, Zhao D X, Zhang S S, Yue Z W, Qin C C, Jiao Z Y, and Bian X B 2023 Chin. Phys. Lett. 40 103202 |
[14] | Guo X L, Jin C, He Z Q, Zhao S F, Zhou X X, and Cheng Y 2021 Chin. Phys. Lett. 38 123301 |
[15] | Lanin A A, Stepanov E A, Fedotov A B, and Zheltikov A M 2017 Optica 4 516 |
[16] | Li L, Lan P, He L, Cao W, Zhang Q, and Lu P 2020 Phys. Rev. Lett. 124 157403 |
[17] | Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Klug D D, and Corkum P B 2015 Phys. Rev. Lett. 115 193603 |
[18] | Qiao Y, Huo Y, Liang H, Chen J, Liu W, Yang Y, and Jiang S 2023 Phys. Rev. B 107 075201 |
[19] | Wu D, Li L, Zhan Y, Huang T, Cui H, Li J, Lan P, and Lu P 2022 Phys. Rev. A 105 063101 |
[20] | Qiao Y, Huo Y Q, Jiang S C, Yang Y J, and Chen J G 2022 Opt. Express 30 9971 |
[21] | Zhao Y T, Ma S Y, Jiang S C, Yang Y J, Zhao X, and Chen J G 2019 Opt. Express 27 34392 |
[22] | Lakhotia H, Kim H, Zhan M, Hu S, Meng S, and Goulielmakis E 2020 Nature 583 55 |
[23] | Luu T T and Worner H J 2018 Nat. Commun. 9 916 |
[24] | Antoine P, L'Huillier A, and Lewenstein M 1996 Phys. Rev. Lett. 77 1234 |
[25] | Nourbakhsh Z, Tancogne-Dejean N, Merdji H, and Rubio A 2021 Phys. Rev. Appl. 15 014013 |
[26] | Hu S Q and Meng S 2023 Chin. Phys. Lett. 40 117801 |
[27] | Zhao X, Wang S J, Yu W W, Wei H, Wei C, Wang B, Chen J, and Lin C D 2020 Phys. Rev. Appl. 13 034043 |
[28] | Zhou S S, Yang Y J, Yang Y, Suo M Y, Li D Y, Qiao Y, Yuan H Y, Lan W D, and Hu M H 2023 Chin. Phys. B 32 013201 |
[29] | Tao W, Wang L, Song P, Xiao F, Wang J, Zheng Z, Zhao J, Wang X, and Zhao Z 2023 Chin. Phys. Lett. 40 063201 |
[30] | Zhou X B, Lock R, Wagner N, Li W, Kapteyn H C, and Murnane M M 2009 Phys. Rev. Lett. 102 073902 |
[31] | Cireasa R, Boguslavskiy A, Pons B et al. 2015 Nat. Phys. 11 654 |
[32] | Graves C, Reid A, Wang T et al. 2013 Nat. Mater. 12 293 |
[33] | Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, and Reis D A 2011 Nat. Phys. 7 138 |
[34] | Lang Y, Peng Z, Liu J, Zhao Z, and Ghimire S 2022 Phys. Rev. Lett. 129 167402 |
[35] | Jiang S C, Chen J G, Wei H, Yu C, Lu R, and Lin C D 2018 Phys. Rev. Lett. 120 253201 |
[36] | Lv Y Y, Xu J, Han S, Zhang C, Han Y, Zhou J, Yao S H, Liu X P, Lu M H, Weng H et al. 2021 Nat. Commun. 12 6437 |
[37] | Peng Z Y, Lang Y, Zhu Y L, Zhao J, Zhang D W, Zhao Z X, and Yuan J M 2023 Chin. Phys. Lett. 40 054203 |
[38] | Lang Y, Peng Z Y, and Zhao Z X 2022 Chin. Phys. Lett. 39 114201 |
[39] | Jia L, Zhang Z, Yang D Z, Liu Y, Si M S, Zhang G P, and Liu Y S 2020 Phys. Rev. B 101 144304 |
[40] | Qiao Y, Chen J, Huo Y, Liang H, Yu R, Chen J, Liu W, Jiang S, and Yang Y 2023 Phys. Rev. A 107 023523 |
[41] | Yu C, Zhang X, Jiang S, Cao X, Yuan G, Wu T, Bai L, and Lu R 2016 Phys. Rev. A 94 013846 |
[42] | Jiang S C, Yu C, Chen J G, Huang Y W, Lu R F, and Lin C D 2020 Phys. Rev. B 102 155201 |
[43] | Zhao J, Liu J, Wang X, Yuan J, and Zhao Z 2022 Chin. Phys. Lett. 39 123201 |
[44] | Peng Q F, Peng Z Y, Lang Y, Zhu Y L, Zhang D W, Lü Z, and Zhao Z 2022 Chin. Phys. Lett. 39 053301 |
[45] | Wang S, Guo J, He X, Liang Y, Xie B, Zhong S, Teng H, and Wei Z 2023 Chin. Phys. B 32 063301 |
[46] | Shao J, Zhang C P, Jia J C, Ma J L, and Miao X Y 2019 Chin. Phys. Lett. 36 054203 |
[47] | Zhao Y T, Xu X Q, Jiang S C, Zhao X, Chen J G, and Yang Y J 2020 Phys. Rev. A 101 033413 |
[48] | Zhao Y T, Jiang S C, Zhao X, Chen J G, and Yang Y J 2020 Opt. Lett. 45 2874 |
[49] | Liu H, Li Y, You Y S, Ghimire S, Heinz T F, and Reis D A 2017 Nat. Phys. 13 262 |
[50] | Yoshikawa N, Tamaya T, and Tanaka K 2017 Science 356 736 |
[51] | You Y S, Reis D A, and Ghimire S 2017 Nat. Phys. 13 345 |
[52] | Tancogne-Dejean N, Mücke O, Kartner F, and Rubio A 2017 Nat. Commun. 8 745 |
[53] | Zhang X, Li J, Zhou Z, Yue S, Du H, Fu L, and Luo H G 2019 Phys. Rev. B 99 014304 |
[54] | Feng Y K, Shi S X, Li J B, Ren Y J, Zhang X, Chen J H, and Du H C 2021 Phys. Rev. A 104 043525 |
[55] | Song X H, Yang S D, Zuo R X, Meier T, and Yang W F 2020 Phys. Rev. A 101 033410 |
[56] | Tang D and Bian X B 2021 Phys. Rev. B 104 104302 |
[57] | Chen Z Y and Qin R 2019 Opt. Express 27 3761 |
[58] | Saito N, Xia P, Lu F, Kanai T, Itatani J, and Ishii N 2017 Optica 4 1333 |
[59] | Klemke N, Mücke O D, Rubio A, Kärtner A F X, and Tancogne-Dejean N 2020 Phys. Rev. B 102 104308 |
[60] | He Y L, Guo J, Gao F Y, and Liu X S 2022 Phys. Rev. B 105 024305 |
[61] | Heinrich T, Taucer M, Kfir O, Corkum P, Staudte A, Ropers C, and Sivis M 2021 Nat. Commun. 12 3723 |
[62] | Qiao Y, Wu D, Chen J G, Wang J, Guo F M, and Yang Y J 2019 Phys. Rev. A 100 063428 |
[63] | Hu Z J, Xie X C, Yang Z H, Wang Y H, and Jiang S C 2023 Symmetry 15 1427 |
[64] | Qian C, Yu C, Jiang S, Zhang T, Gao J, Shi S, Pi H, Weng H, and Lu R 2022 Phys. Rev. X 12 021030 |
[65] | Neufeld O, Podolsky D, and Cohen O 2019 Nat. Commun. 10 405 |
[66] | Qian C, Jiang S, Wu T, Weng H, Yu C, and Lu R 2023 arXiv:2304.10109 [physics.optics] |
[67] | Yu R X, Qiao Y, Li P, Wang J, Chen J G, Feng W, Guo F M, and Yang Y J 2023 Chin. Phys. B 32 063302 |
[68] | Odžak S and Milošević D B 2015 Phys. Rev. A 92 053416 |
[69] | Zhang X, Zhu X, Liu X, Wang D, Zhang Q, Lan P, and Lu P 2017 Opt. Lett. 42 1027 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|