Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 127501    DOI: 10.1088/0256-307X/40/12/127501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Highly Anisotropic Magnetism and Nearly Isotropic Magnetocaloric Effect in Mn$_{3}$Sn$_{2}$ Single Crystals
Jianli Bai1,2, Qingxin Dong1,2, Libo Zhang1,2, Qiaoyu Liu1,2, Jingwen Cheng1,2, Pinyu Liu1,2, Cundong Li1,2, Yingrui Sun1,2, Yu Huang1,2, Zhian Ren1,2, and Genfu Chen1,2,3*
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Jianli Bai, Qingxin Dong, Libo Zhang et al  2023 Chin. Phys. Lett. 40 127501
Download: PDF(3270KB)   PDF(mobile)(3303KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Mn$_{3}$Sn$_{2}$ has been proposed as an ideal material for magnetic refrigeration. It undergoes two successive ferromagnetic transitions ($T_{\rm C1} = 262$ K and $T_{\rm C2} = 227$ K) and one antiferromagnetic transition ($T_{\rm N} = 192$ K). Herein we report, for the first time, the preparation of single crystals of Mn$_{3}$Sn$_{2}$ from Bi flux. The resultant anisotropic magnetic properties and magnetocaloric effect are investigated along the three principal crystallographic directions of the crystal. Significant anisotropy of magnetic susceptibility and multiple field-induced metamagnetic transitions were found at low fields, whereas the magnetocaloric effect was found to be almost isotropic and larger than that of the polycrystalline one. The maximum magnetic entropy change amounts to $-\Delta S_{\rm M} = 4.01$ J$\cdot$kg$^{-1}\cdot$K$^{-1}$ near $T_{\rm C1}$ under a magnetic field change of $\mu_{0}\Delta H = 5$ T along the $c$-axis, with the corresponding refrigerant capacity of 1750 mJ$\cdot$cm$^{-3}$. Combined with a much wider cooling temperature span ($\sim$ $80$ K), our results demonstrate Mn$_{3}$Sn$_{2}$ single crystal to be an attractive candidate working material for active magnetic refrigeration at low temperatures.
Received: 08 October 2023      Published: 20 December 2023
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.30.Gw (Magnetic anisotropy)  
  75.47.Np (Metals and alloys)  
  75.50.Gg (Ferrimagnetics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/127501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/127501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jianli Bai
Qingxin Dong
Libo Zhang
Qiaoyu Liu
Jingwen Cheng
Pinyu Liu
Cundong Li
Yingrui Sun
Yu Huang
Zhian Ren
and Genfu Chen
[1] Franco V, Blázquez J S, Ipus J J, Law J Y, Moreno-Ramírez L M, and Conde A 2018 Prog. Mater. Sci. 93 112
[2] Gschneidner K A, J, and Pecharsky V K 2000 Annu. Rev. Mater. Sci. 30 387
[3] Gschneidner Jr K A, Pecharsky V K, and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[4] Bohigas X, Molins E, Roig A, Tejada J, and Zhang X X 2000 IEEE Trans. Magn. 36 538
[5] Hirano N, Nagaya S, Takahashi M, Kuriyama T, Ito K, and Nomura S 2002 AIP Conf. Proc. 613 1027
[6] Tegus O, Brück E, Buschow K H J, and de Boer F R 2002 Nature 415 150
[7] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[8] Hu F X, Shen B G, and Sun J R 2000 Appl. Phys. Lett. 76 3460
[9] Hu F X, Sun J R, Wu G H, and Shen B G 2001 J. Appl. Phys. 90 5216
[10] Hashimoto T, Kuzuhara T, Sahashi M, Inomata K, Tomokiyo A, and Yayama H 1987 J. Appl. Phys. 62 3873
[11] Yue M, Zhang J X, Zeng H, Chen H L, and Liu X B 2007 J. Appl. Phys. 101 09C520
[12] Tamari N, Tanaka T, Tanaka K, Kondoh I, Kawahara M, and Tokita M 1995 J. Ceram. Soc. Jpn. 103 740
[13] Reid C E, Barclay J A, Hall J L, and Sarangi S 1994 J. Alloys Compd. 207–208 366
[14] Mazet T, Ihou-Mouko H, and Malaman B 2006 Appl. Phys. Lett. 89 022503
[15] Recour Q, Mazet T, and Malaman B 2009 J. Appl. Phys. 105 033905
[16] Zeng R, Lu L, Li W X et al. 2009 J. Appl. Phys. 105 07A935
[17] Zhao X G, Lee E H, Hsieh C C, Shih C W, Chang W C, and Zhang Z D 2012 J. Appl. Phys. 111 07A912
[18] Stange M, Fjellvåg H, Furuseth S, and Hauback B C 1997 J. Alloys Compd. 259 140
[19] Elding-Pontén M, Stenberg L, Larsson A K, Lidin S, and Ståhl K 1997 J. Solid State Chem. 129 231
[20] Hering P, Friese K, Voigt J, Persson J, Aliouane N, Grzechnik A, Senyshyn A, and Brückel T 2015 Chem. Mater. 27 7128
[21] Phan M H and Yu S C 2007 J. Magn. Magn. Mater. 308 325
[22] Kuz'min M D and Tishin A M 1991 J. Phys. D 24 2039
[23] Luo X H, Ren W J, and Zhang Z D 2018 J. Magn. Magn. Mater. 445 37
[24] dos Reis R D, Silva L M D, Santos A O D, Medina A M N, Cardoso L P, and Gandra F C G 2014 J. Alloys Compd. 582 461
[25] Balli M, Jandl S, Fournier P, Vermette J, and Dimitrov D Z 2018 Phys. Rev. B 98 184414
[26] Balli M, Jandl S, Fournier P, and Gospodinov M M 2014 Appl. Phys. Lett. 104 032402
[27] Nikitin S A, Skokov K P, Koshkid'ko Y S, Pastushenkov Y G, and Ivanova T I 2010 Phys. Rev. Lett. 105 137205
[28] Jin J L, Zhang X Q, Li G K, Cheng Z H, Zheng L, and Lu Y 2011 Phys. Rev. B 83 184431
[29] Balli M, Jandl S, Fournier P, and Dimitrov D Z 2016 Appl. Phys. Lett. 108 102401
[30] Liu Y and Petrovic C 2018 Phys. Rev. B 97 174418
[31] Mazet T, Recour Q, and Malaman B 2010 Phys. Rev. B 81 174427
[32] Pecharsky V K and Gschneidner K A 1999 J. Appl. Phys. 86 565
[33] Tolstorebrov I, Eikevik T M, and Bantle M 2016 Int. J. Refrig. 63 37
[34] Howlett R J and Littlewood J R 2022 Smart and Sustainable Technology for Resilient Cities and Communities—An Overview. In: Howlett R J, Jain L C, Littlewood J R, and Balas M M (eds) Smart and Sustainable Technology for Resilient Cities and Communities. Advances in Sustainability Science and Technology (Singapore: Springer) pp 1–7
[35] He Y J, Jiang Y Y, Fan Y C, Chen G M, and Tang L M 2020 Renewable Energy 157 204
[36] Yamaguchi H, Niu X D, Sekimoto K, and Nekså P 2011 Int. J. Refrig. 34 466
[37] Wang H D, Song Y L, and Cao F 2020 Int. J. Refrig. 119 1
[38] Li D W, Bai T, and Yu J L 2023 Int. J. Refrig. 145 425
[39]Bani Issa A A M, Pergantis E N, Brehm J K, Groll E A, and Ziviani D 2022 International Refrigeration and Air Conditioning Conference paper 2424 (Purdue Libraries, Purdue University)
[40] Tang F and Wan X G 2022 Phys. Rev. B 105 155156
Related articles from Frontiers Journals
[1] Qingqi Zeng, Jianlei Shen, Enke Liu, Xuekui Xi, Wenhong Wang, Guangheng Wu, and Xixiang Zhang. Large Barocaloric Effect with High Pressure-Driving Efficiency in a Hexagonal MnNi$_{0.77}$Fe$_{0.23}$Ge Alloy[J]. Chin. Phys. Lett., 2020, 37(7): 127501
[2] Ruo-Shui Liu, Jun Liu, Li-Chen Wang, Zheng-Rui Li, Xiang Yu, Yan Mi, Qiao-Yan Dong, Kai Li, Dan-Li Li, Chen-Hui Lv, Li-Feng Liu, Shu-Li He. Table-Like Large Magnetocaloric Effect in the Misch Metal $R$Si Compound[J]. Chin. Phys. Lett., 2020, 37(1): 127501
[3] Kun Li, Fanggui Wang, Youfang Lai, Mingzhu Xue, Xin Li, Jinbo Yang, Changsheng Wang, Jingzhi Han, Shunquan Liu, Wenyun Yang, Yingchang Yang, Honglin Du. Magnetic and Magnetocaloric Properties of Polycrystalline and Oriented Mn$_{2-\delta}$Sn[J]. Chin. Phys. Lett., 2019, 36(9): 127501
[4] Yan-Fei Ma, Ben-Zhen Tang, Lei Xia, Ding Ding. Outstanding Magneto-Caloric Effect of a Gd$_{60}$Ni$_{37}$Co$_{3}$ Amorphous Alloy[J]. Chin. Phys. Lett., 2016, 33(12): 127501
[5] Li-Fu Bao, Wen-Deng Huang, Ya-Jie Ren. Tuning Martensitic Phase Transition by Non-Magnetic Atom Vacancy in MnCoGe Alloys and Related Giant Magnetocaloric Effect[J]. Chin. Phys. Lett., 2016, 33(07): 127501
[6] Cheng Wu, Ding Ding, Lei Xia. Effect of Al Addition on the Glass-Forming Ability and Magnetic Properties of a Gd–Co Binary Amorphous Alloy[J]. Chin. Phys. Lett., 2016, 33(01): 127501
[7] DING Ding, ZHANG Yi-Qing, XIA Lei. Magneto-Caloric Response of a Gd55Co25Al18Sn2 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2015, 32(10): 127501
[8] CHENG Ji-Hua, WANG Yin-Gang, XIE Dan. Interface Effects on the Magnetoelectric Properties of Magnetoelectric Multilayer Composites[J]. Chin. Phys. Lett., 2015, 32(01): 127501
[9] HU Feng, ZHANG Guo-Ying, HUANG Yi-Jia, XIA Wang-Suo. Effective Field Based on the Exchange Interaction in Gd3Ga5O12 under Low and Moderate Magnetic Field at Low Temperature[J]. Chin. Phys. Lett., 2014, 31(05): 127501
[10] DING Ding, WANG Peng, GUAN Quan, TANG Mei-Bo, XIA Lei. Excellent Glass Forming Ability and Refrigeration Capacity of a Gd55Al20Ni12Co10Mn3 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2013, 30(9): 127501
[11] WANG Peng, CHAN Kang-Cheung, LU Shuang, TANG Mei-Bo, XIA Lei. Effect of Minor Co Substitution for Ni on the Glass Forming Ability and Magnetic Properties of Gd55Al20Ni25 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2012, 29(9): 127501
[12] ZHANG Guo-Ying, CHEN Hui, YANG Dan, HU Feng, LIU Hai-Shun. Adiabatic Magnetooptical and Magnetocaloric Effects of Tb3Ga5O12 at Low Temperature in Strong Magnetic Fields[J]. Chin. Phys. Lett., 2012, 29(2): 127501
[13] HUI Xi-Dong**, XU Zhi-Yi, WANG En-Rui, CHEN Guo-Liang, LU Zhao-Ping. Excellent Magnetocaloric Effect in Er60Al18Co22 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2010, 27(11): 127501
[14] ZHAO Xu, CHEN Wei, LI Ai-Jun, MA Li-Mei, ZONG Yun. Structural, Magnetic and Magnetocaloric Properties of La-deficient La0.77-xSrxCa0.2MnO3 Perovskites[J]. Chin. Phys. Lett., 2009, 26(8): 127501
[15] ZHANG Dong-Jie, DU You-Wei. Giant Positive Magnetoresistance in Magnetic Multilayer Film Prepared by Ion-Beam Sputtering[J]. Chin. Phys. Lett., 2003, 20(6): 127501
Viewed
Full text


Abstract