Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 126101    DOI: 10.1088/0256-307X/40/12/126101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Chiral Dirac Fermion in a Collinear Antiferromagnet
Ao Zhang1†, Ke Deng1†, Jieming Sheng1,2†, Pengfei Liu1†, Shiv Kumar3, Kenya Shimada3, Zhicheng Jiang4, Zhengtai Liu4, Dawei Shen4, Jiayu Li1, Jun Ren1, Le Wang1, Liang Zhou1, Yoshihisa Ishikawa5, Takashi Ohhara6, Qiang Zhang7, Garry McIntyre8, Dehong Yu8, Enke Liu9, Liusuo Wu1*, Chaoyu Chen1*, and Qihang Liu1*
1Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
2Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
3Hiroshima Synchrotron Radiation Centre, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
4State Key Laboratory of Functional Materials for Informatics and Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
5Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
6Neutron Science Section, J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
7Neutron Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
8Australian Nuclear Science and Technology Organisation, Locked bag 2001, Kirrawee DC, New South Wales 2232, Australia
9State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Ao Zhang, Ke Deng, Jieming Sheng et al  2023 Chin. Phys. Lett. 40 126101
Download: PDF(21962KB)   PDF(mobile)(26747KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral “Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden $SU(2)$ symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb$_{3}$S$_{6}$. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions. Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb$_{3}$S$_{6}$, paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.
Received: 30 November 2023      Express Letter Published: 08 December 2023
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  75.50.Ee (Antiferromagnetics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/126101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/126101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ao Zhang
Ke Deng
Jieming Sheng
Pengfei Liu
Shiv Kumar
Kenya Shimada
Zhicheng Jiang
Zhengtai Liu
Dawei Shen
Jiayu Li
Jun Ren
Le Wang
Liang Zhou
Yoshihisa Ishikawa
Takashi Ohhara
Qiang Zhang
Garry McIntyre
Dehong Yu
Enke Liu
Liusuo Wu
Chaoyu Chen
and Qihang Liu
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, and Firsov A A 2005 Nature 438 197
[2] Fu L, Kane C L, and Mele E J 2007 Phys. Rev. Lett. 98 106803
[3] Moore J E and Balents L 2007 Phys. Rev. B 75 121306
[4] Shen S Q 2012 Topological Insulators. In: Springer Series in Solid-State Sciences vol 174 (Berlin: Springer)
[5] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J, and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[6] Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, and Fang Z 2012 Phys. Rev. B 85 195320
[7] Wang Z J, Weng H M, Wu Q S, Dai X, and Fang Z 2013 Phys. Rev. B 88 125427
[8] Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898
[9] Hua G Y, Nie S M, Song Z D, Yu R, Xu G, and Yao K L 2018 Phys. Rev. B 98 201116
[10] Wan X G, Turner A M, Vishwanath A, and Savrasov S Y 2011 Phys. Rev. B 83 205101
[11] Fang C, Gilbert M J, Dai X, and Bernevig B A 2012 Phys. Rev. Lett. 108 266802
[12] Armitage N P, Mele E J, and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[13] Altland A, Simons B D, and Zirnbauer M R 2002 Phys. Rep. 359 283
[14] Kargarian M, Randeria M, and Lu Y M 2016 Proc. Natl. Acad. Sci. USA 113 8648
[15] Rao Z C et al. 2019 Nature 567 496
[16] Yuan Q Q et al. 2019 Sci. Adv. 5 eaaw9485
[17] Xu X T et al. 2019 Phys. Rev. B 100 045104
[18] Huber N et al. 2022 Phys. Rev. Lett. 129 026401
[19] Yu Z M, Zhang Z, Liu G B, Wu W, Li X P, Zhang R W, Yang S A, and Yao Y 2022 Sci. Bull. 67 375
[20] Liu P F, Zhang A, Han J Z, and Liu Q H 2022 Innovation 3 100343
[21] Brinkman W F and Elliott R J 1966 Proc. R. Soc. A 294 1438
[22] Litvin D B and Opechowski W 1974 Physica 76 538
[23] Liu P F, Li J Y, Han J Z, Wan X G, and Liu Q H 2022 Phys. Rev. X 12 021016
[24] Ghimire N J, Botana A S, Jiang J S, Zhang J J, Chen Y S, and Mitchell J F 2018 Nat. Commun. 9 3280
[25] Tenasini G et al. 2020 Phys. Rev. Res. 2 023051
[26] Mangelsen S, Zimmer P, Nather C, Mankovsky S, Polesya S, Ebert H, and Bensch W 2021 Phys. Rev. B 103 184408
[27] Tanaka H et al. 2022 Phys. Rev. B 105 L121102
[28] Yang X P et al. 2022 Phys. Rev. B 105 L121107
[29] Popčević P et al. 2022 Phys. Rev. B 105 155114
[30] Bertaut E F 1968 Acta Cryst. A 24 217
[31] Parkin S S P, Marseglia E A, and Brown P J 1983 J. Phys. C 16 2765
[32] Damascelli A, Hussain Z, and Shen Z X 2003 Rev. Mod. Phys. 75 473
[33] Gu P et al. 2023 arXiv:2306.09616 [cond-mat.mes-hall]
[34] Gao A Y et al. 2021 Nature 595 521
[35] Chen R, Sun H P, Gu M, Hua C B, Liu Q, Lu H Z, and Xie X C 2022 Natl. Sci. Rev. 2022 nwac140
[36] Takagi H et al. 2023 Nat. Phys. 19 961
[37] Park P et al. 2023 arXiv:2303.03760 [cond-mat.str-el]
[38] Chen W J et al. 2021 Phys. Rev. B 103 L180404
[39] Yao W L, Zhao Y, Qiu Y M, Balz C, Stewart J R, Lynn J W, and Li Y 2023 Phys. Rev. Res. 5 L022045
[40] Šmejkal L, Sinova J, and Jungwirth T 2022 Phys. Rev. X 12 031042
[41] Šmejkal L, Sinova J, and Jungwirth T 2022 Phys. Rev. X 12 040501
[42] Chen X, Ren J, Li J, Liu Y, and Liu Q 2023 arXiv:2307.12366 [cond-mat.mtrl-sci]
[43] Edwards A J 2011 Aust. J. Chem. 64 869
[44] Ohhara T et al. 2016 J. Appl. Crystallogr. 49 120
[45] Huq A, Hodges J P, Gourdon O, and Heroux L 2011 Z. Kristallogr. Proc. 1 127
[46] Rodríguez-Carvajal J 1993 Physica B 192 55
[47] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[48] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[49] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
[50] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[51] Perdew J P, Burke K, and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[52] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[53] Liechtenstein A I, Anisimov V I, and Zaanen J 1995 Phys. Rev. B 52 R5467
[54] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, and Sutton A P 1998 Phys. Rev. B 57 1505
[55] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685
[56] Marzari N, Mostofi A A, Yates J R, Souza I, and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[57] Wu Q S, Zhang S N, Song H F, Troyer M, and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
Related articles from Frontiers Journals
[1] Guo Chen, Caoping Niu, Wenming Xia, Jie Zhang, Zhi Zeng, and Xianlong Wang. Route to Stabilize Cubic Gauche Polynitrogen to Ambient Conditions via Surface Saturation by Hydrogen[J]. Chin. Phys. Lett., 2023, 40(8): 126101
[2] Liang Ma, Lingrui Wang, Yifang Yuan, Haizhong Guo, and Hongbo Wang. High-Temperature Superconductivity in Doped Boron Clathrates[J]. Chin. Phys. Lett., 2023, 40(8): 126101
[3] Ruoyun Lv, Xigui Yang, Dongwen Yang, Chunyao Niu, Chunxiang Zhao, Jinxu Qin, Jinhao Zang, Fuying Dong, Lin Dong, and Chongxin Shan. Computational Prediction of a Novel Superhard $sp^{3}$ Trigonal Carbon Allotrope with Bandgap Larger than Diamond[J]. Chin. Phys. Lett., 2021, 38(7): 126101
[4] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 126101
[5] Yanling Zhang , Xiaozhu Hao , Yanping Huang , Fubo Tian, Da Li , Youchun Wang , Hao Song , and Defang Duan . Structural and Electrical Properties of Be$_{x}$Zn$_{1-x}$O Alloys under High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 126101
[6] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 126101
[7] M. Kr. Deka, A. N. Dev. Supersonic Shock Wave with Landau Quantization in a Relativistic Degenerate Plasma[J]. Chin. Phys. Lett., 2020, 37(1): 126101
[8] Tang-Shi Yao, Cen-Yao Tang, Meng Yang, Ke-Jia Zhu, Da-Yu Yan, Chang-Jiang Yi, Zi-Li Feng, He-Chang Lei, Cheng-He Li, Le Wang, Lei Wang, You-Guo Shi, Yu-Jie Sun, Hong Ding. Machine Learning to Instruct Single Crystal Growth by Flux Method[J]. Chin. Phys. Lett., 2019, 36(6): 126101
[9] Jian-Hui Chen, Cheng Cai, Xiu-Jun Fu. Decagonal and Dodecagonal Quasicrystals Obtained by Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2019, 36(3): 126101
[10] Mei-Zhe Lv, Bin Xu, Li-Chao Cai, Feng Jia, Xing-Dong Yuan. Analysis of Transition Mechanism of Cubic Boron Nitride Single Crystals under High Pressure-High Temperature with Valence Electron Structure Calculation[J]. Chin. Phys. Lett., 2019, 36(1): 126101
[11] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 126101
[12] Yue-Yu Zhang, Shiyou Chen, Peng Xu, Hongjun Xiang, Xin-Gao Gong, Aron Walsh, Su-Huai Wei. Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH$_{3}$NH$_{3}$PbI$_{3}$$^*$[J]. Chin. Phys. Lett., 2018, 35(3): 126101
[13] Kanokwan Kanchiang, Phakkhananan Pakawanit, Rattikorn Yimnirun. Local Structure Analysis of Lead Zinc Niobate-Barium Titanate Ceramic by X-Ray Absorption Spectroscopy and Density Functional Calculation[J]. Chin. Phys. Lett., 2017, 34(8): 126101
[14] Zi-Wei Zhu, Ji-Yuan Zheng, Lai Wang, Bing Xiong, Chang-Zheng Sun, Zhi-Biao Hao, Yi Luo, Yan-Jun Han, Jian Wang, Hong-Tao Li. $Ab\ Initio$ Calculation of Dielectric Function in Wurtzite GaN Based on Walter's Model[J]. Chin. Phys. Lett., 2017, 34(3): 126101
[15] B. Merabet, H. Alamri, M. Djermouni, A. Zaoui, S. Kacimi, A. Boukortt, M. Bejar. Optimal Bandgap of Double Perovskite La-Substituted Bi$_{2}$FeCrO$_{6}$ for Solar Cells: an ab initio GGA+$U$ Study[J]. Chin. Phys. Lett., 2017, 34(1): 126101
Viewed
Full text


Abstract