GENERAL |
|
|
|
|
Geometric Thermoelectric Pump: Energy Harvesting beyond Seebeck and Pyroelectric Effects |
Jie Ren* |
Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China |
|
Cite this article: |
Jie Ren 2023 Chin. Phys. Lett. 40 090501 |
|
|
Abstract Thermal-electric conversion is crucial for smart energy control and harvesting, such as thermal sensing and waste heat recovering. So far, researchers are aware of two main ways of direct thermal-electric conversion, Seebeck and pyroelectric effects, each with different working mechanisms, conditions and limitations. Here, we report the concept of Geometric Thermoelectric Pump (GTEP), as the third way of thermal-electric conversion beyond Seebeck and pyroelectric effects. In contrast to Seebeck effect that requires spatial temperature difference, GTEP converts the time-dependent ambient temperature fluctuation into electricity. Moreover, GTEP does not require polar materials but applies to general conducting systems, and thus is also distinct from pyroelectric effect. We demonstrate that GTEP results from the temperature-fluctuation-induced charge redistribution, which has a deep connection to the topological geometric phase in non-Hermitian dynamics, as a consequence of the fundamental nonequilibrium thermodynamic geometry. The findings advance our understanding of geometric phase induced multiple-physics-coupled pump effect and provide new means of thermal-electric energy harvesting.
|
|
Received: 25 June 2023
Editors' Suggestion
Published: 29 August 2023
|
|
PACS: |
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
77.70.+a
|
(Pyroelectric and electrocaloric effects)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
|
|
|
[1] | Chu S and Majumdar A 2012 Nature 488 294 |
[2] | Li N B, Ren J, Wang L, Zhang G, Hänggi P, and Li B W 2012 Rev. Mod. Phys. 84 1045 |
[3] | Lawrence Livermore National Laboratory, Estimated Energy Use in 2021 https://flowcharts.llnl.gov. |
[4] | DiSalvo F J 1999 Science 285 703 |
[5] | Spin Seebeck effect is also included here, which first converts the thermal difference into spin current and then into electric current, through the inverse spin Hall effect. |
[6] | Bell L E 2008 Science 321 1457 |
[7] | Tritt T M 2011 Annu. Rev. Mater. Res. 41 433 |
[8] | Shakouri A 2011 Annu. Rev. Mater. Res. 41 399 |
[9] | Lang S B 1974 Sourcebook Pyroelectricity (New York: CRC Press) vol 2 |
[10] | Whatmore R 1986 Rep. Prog. Phys. 49 1335 |
[11] | Lang S B 2005 Phys. Today 58 31 |
[12] | Utilizing the ferro-paraelectric phase transition to generate electricity from temperature fluctuations also belongs to the pyroelectric effect. |
[13] | Sebald G, Guyomar D, and Agbossou A 2009 Smart Mater. Struct. 18 125006 |
[14] | Morozovska A, Eliseev E, Svechnikov G, and Kalinin S V 2010 J. Appl. Phys. 108 042009 |
[15] | Yang Y, Guo W, Pradel K C, Zhu G, Zhou Y, Zhang Y, Hu Y, Lin L, and Wang Z L 2012 Nano Lett. 12 2833 |
[16] | Yang Y, Wang S, Zhang Y, and Wang Z L 2012 Nano Lett. 12 6408 |
[17] | Yang Y, Jung J H, Yun B K, Zhang F, Pradel K C, Guo W, and Wang Z L 2012 Adv. Mater. 24 5357 |
[18] | Rogers J A and Paik U 2010 Nat. Nanotechnol. 5 385 |
[19] | Seebeck T J 1822–1823 Abhandlungen der Königlich Preussischen Akademie der Wissenschaften (Berlin: Springer) p 265 |
[20] | Brewster D 1824 Edinburgh. J. Sci. 1 208 |
[21] | Majumdar A 2013 MRS Bull. 38 947 |
[22] | Wang Z, Wang L, Chen J, Wang C, and Ren J 2022 Front. Phys. 17 13021 |
[23] | Wang Z, Chen J, and Ren J 2022 Phys. Rev. E 106 L032102 |
[24] | Harman T, Taylor P, Walsh M, and LaForge B 2002 Science 297 2229 |
[25] | Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J P, and Gogna P 2007 Adv. Mater. 19 1043 |
[26] | Reddy P, Jang S Y, Segalman R A, and Majumdar A 2007 Science 315 1568 |
[27] | Lee W, Kim K, Jeong W, Zotti L A, Pauly F, Cuevas J C, and Reddy P 2013 Nature 498 209 |
[28] | Breuer H P, Petruccione F et al. 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) |
[29] | Haug H, Jauho A P et al. 2008 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer) vol 2 |
[30] | Sze S M, Li Y, and Ng K K 2021 Physics of Semiconductor Devices (New York: John Wiley & Sons) |
[31] | Singh J 2005 Smart Electronic Materials: Fundamentals and Applications (Cambridge: Cambridge University Press) |
[32] | Pancharatnam S 1956 Proc. Indian Acad. Sci. A 44 247 |
[33] | Ben-Aryeh Y 2004 J. Opt. B: Quantum Semiclass. Opt. 6 R1 |
[34] | Sinitsyn N and Nemenman I 2007 Europhys. Lett. 77 58001 |
[35] | Sinitsyn N 2009 J. Phys. A 42 193001 |
[36] | Ren J, Hänggi P, Li B et al. 2010 Phys. Rev. Lett. 104 170601 |
[37] | Ren J, Liu S, and Li B 2012 Phys. Rev. Lett. 108 210603 |
[38] | Chen T, Wang X B, and Ren J 2013 Phys. Rev. B 87 144303 |
[39] | Wang C, Ren J, and Cao J 2017 Phys. Rev. A 95 023610 |
[40] | Astumian R D and Hänggi P 2002 Phys. Today 55 33 |
[41] | Rahav S, Horowitz J, and Jarzynski C 2008 Phys. Rev. Lett. 101 140602 |
[42] | Sagawa T and Hayakawa H 2011 Phys. Rev. E 84 051110 |
[43] | Yuge T, Sagawa T, Sugita A, and Hayakawa H 2012 Phys. Rev. B 86 235308 |
[44] | Uchiyama C 2014 Phys. Rev. E 89 052108 |
[45] | Schnakenberg J 1976 Rev. Mod. Phys. 48 571 |
[46] | Luo J L, van den Broeck C, and Nicolis G 1984 Z. Phys. B - Condens. Matter 56 165 |
[47] | Seifert U 2005 Phys. Rev. Lett. 95 040602 |
[48] | Ren J 2013 Phys. Rev. B 88 220406 |
[49] | Ren J and Zhu J X 2013 Phys. Rev. B 88 094427 |
[50] | Ren J, Fransson J, and Zhu J X 2014 Phys. Rev. B 89 214407 |
[51] | Tang G M, Chen X B, Ren J, and Wang J 2018 Phys. Rev. B 97 081407 |
[52] | Wang L Q, Wang Z, Wang C, and Ren J 2022 Phys. Rev. Lett. 128 067701 |
[53] | Xu L J, Xu G Q, Huang J P, and Qiu C W 2022 Phys. Rev. Lett. 128 145901 |
[54] | Xu L J, Xu G Q, Li J X, Li Y, Huang J P, and Qiu C W 2022 Phys. Rev. Lett. 129 155901 |
[55] | Lei M, Xu L, and Huang J 2023 Mater. Today Phys. 34 101057 |
[56] | Lee S W, Yang Y, Lee H W, Ghasemi H, Kraemer D, Chen G, and Cui Y 2014 Nat. Commun. 5 3942 |
[57] | Tusek J, Engelbrecht K, Eriksen D, Dall'Olio S, Tusek J, and Pryds N 2016 Nat. Energy 1 16134 |
[58] | Ma R J, Zhang Z Y, Tong K, Huber D, Kornbluh R, Ju Y S, and Pei Q B 2017 Science 357 1130 |
[59] | Wang Y D, Zhang Z Y, Usui T, Benedict M, Hirose S, Lee J, Kalb J, and Schwartz D 2020 Science 370 129 |
[60] | Torelló A, Lheritier P, Usui T, Nouchokgwe Y, Grard M, Bouton O, Hirose S, and Defay E 2020 Science 370 125 |
[61] | Meng Y, Zhang Z, Wu H, Wu R, Wu J, Wang H, and Pei Q 2020 Nat. Energy 5 996 |
[62] | Meng Y, Pu J, and Pei Q 2021 Joule 5 780 |
[63] | Cui H, Zhang Q, Bo Y, Bai P, Wang M, Zhang C, Qian X, and Ma R 2022 Joule 6 258 |
[64] | Qian X S, Chen X, Zhu L, and Zhang Q M 2023 Science 380 eadg0902 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|