Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 090201    DOI: 10.1088/0256-307X/40/9/090201
GENERAL |
Graviton Momentum: A Natural Source of Dark Energy
Samuel Meng*
Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
Cite this article:   
Samuel Meng 2023 Chin. Phys. Lett. 40 090201
Download: PDF(540KB)   PDF(mobile)(560KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dark energy concept in the standard cosmological model can explain the expansion of the universe. However, the mysteries surrounding dark energy remain, such as its source, its unusual negative pressure, its long-range force, and its unchanged density as the universe expands. We propose a graviton momentum hypothesis, develop a semiclassical model of gravitons, and explain the pervasive dark matter and accelerating universe. The graviton momentum hypothesis is incorporated into the standard model and explains well the mysteries related to dark energy.
Received: 24 May 2023      Published: 29 August 2023
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  45.10.Na (Geometrical and tensorial methods)  
  45.20.dh (Energy conservation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/090201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/090201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Samuel Meng
[1]Slipher V 1917 Proc. Am. Philos. Soc. 56 403
[2] Hubble E 1929 Proc. Natl. Acad. Sci. USA 15 168
[3] Riess A G, Filippenko A V, Challis P et al. 1998 Astron. J. 116 1009
[4] Perlmutter S, Aldering G, Goldhaber G et al. 1999 Astrophys. J. 517 565
[5]Zwicky F 1933 Helv. Phys. Acta 6 110
[6] Rubin V C and Ford W K 1970 Astrophys. J. 159 379
[7]Cram T R, Roberts M S, and Whitehurst R N 1980 Astron. Astrophys. Suppl. Ser. 40 215
[8] Sadoulet B 1999 Rev. Mod. Phys. 71 S197
[9] Griest K and Kamionkowski M 2000 Phys. Rep. 333–334 167
[10] Bennett C L, Larson D, Weiland J L et al. 2013 Astron. Astrophys. Suppl. Ser. 208 20
[11] Aurich R and Lustig S 2016 J. Cosmol. Astropart. Phys. 2016(01) 021
[12] Weinberg S 1989 Rev. Mod. Phys. 61 1
[13] Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559
[14] Copeland E J, Sami M, and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753
[15] Frieman J A, Turner M S, and Huterer D 2008 Annu. Rev. Astron. Astrophys. 46 385
[16]Amendola L and Tsujikawa S 2010 Dark Energy: Theory and Observations (Cambridge: Cambridge University Press)
[17] Arun K, Gudennavar S B, and Sivaram C 2017 Adv. Space Res. 60 166
[18] Farnes J S 2018 Astron. & Astrophys. 620 A92
[19] Milgrom M 1983 Astrophys. J. 270 365
[20] Bekenstein J D 2004 Phys. Rev. D 70 083509
[21] Dunkel J 2004 Astrophys. J. 604 L37
[22] Dvali G, Gabadadze G, and Porrati M 2000 Phys. Lett. B 484 112
[23] Kunz M and Sapone D 2007 Phys. Rev. Lett. 98 121301
[24] Peebles P J E and Ratra B 1988 Astrophys. J. Lett. 325 L17
[25] Rozas-Fernández A 2012 Phys. Lett. B 709 313
[26] Caldwell R R, Kamionkowski M, and Weinberg N N 2003 Phys. Rev. Lett. 91 071301
[27] Upadhye A, Ishak M, and Steinhardt P J 2005 Phys. Rev. D 72 063501
[28] Marciu M 2016 Phys. Rev. D 93 123006
[29]Sivaram C and Sinha K P 1975 JIISc 57 257
[30] Gurzadyan V G and Xue S S 2003 Mod. Phys. Lett. A 18 561
Related articles from Frontiers Journals
[1] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift *[J]. Chin. Phys. Lett., 0, (): 090201
[2] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift[J]. Chin. Phys. Lett., 2020, 37(6): 090201
[3] Chuan-Jie Hu, Ya-Li Zeng, Yi-Neng Liu, Huan-Yang Chen. Three-Dimensional Broadband Acoustic Waveguide Cloak[J]. Chin. Phys. Lett., 2020, 37(5): 090201
[4] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 090201
[5] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 090201
[6] Xiang Li, Xu Qian, Bo-Ya Zhang, Song-He Song. A Multi-Symplectic Compact Method for the Two-Component Camassa–Holm Equation with Singular Solutions[J]. Chin. Phys. Lett., 2017, 34(9): 090201
[7] Xiang Li, Xu Qian, Ling-Yan Tang, Song-He Song. A High-Order Conservative Numerical Method for Gross–Pitaevskii Equation with Time-Varying Coefficients in Modeling BEC[J]. Chin. Phys. Lett., 2017, 34(6): 090201
[8] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 090201
[9] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 090201
[10] Ling-Yan Lin, Yu Qiu, Yu Zhang, Hao Zhang. Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS[J]. Chin. Phys. Lett., 2016, 33(10): 090201
[11] Mahdi Ezheiyan, Hossein Sadeghi, Mohammad-Hossein Tavakoli. Thermal Analysis Simulation of Germanium Zone Refining Process Assuming a Constant Radio-Frequency Heating Source[J]. Chin. Phys. Lett., 2016, 33(05): 090201
[12] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 090201
[13] JI Ying, WANG Ya-Wei. Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2015, 32(4): 090201
[14] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 090201
[15] M. N. Stankov, M. D. Petković, V. Lj. Marković, S. N. Stamenković, A. P. Jovanović. The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon[J]. Chin. Phys. Lett., 2015, 32(02): 090201
Viewed
Full text


Abstract