Chin. Phys. Lett.  2023, Vol. 40 Issue (5): 057401    DOI: 10.1088/0256-307X/40/5/057401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Lu–H–N Phase Diagram from First-Principles Calculations
Fankai Xie1,2†, Tenglong Lu1,2†, Ze Yu1,2, Yaxian Wang1, Zongguo Wang3, Sheng Meng1,2,4*, and Miao Liu1,4,5*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
5Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Fankai Xie, Tenglong Lu, Ze Yu et al  2023 Chin. Phys. Lett. 40 057401
Download: PDF(8161KB)   PDF(mobile)(8160KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Employing a comprehensive structure search and high-throughput first-principles calculation method on 1561 compounds, the present study reveals the phase diagram of Lu–H–N. In detail, the formation energy landscape of Lu–H–N is derived and utilized to assess the thermodynamic stability of each compound that is created via element substitution. The result indicates that there is no stable ternary structure in the Lu–H–N chemical system, however, metastable ternary structures, such as Lu$_{20}$H$_{2}$N$_{17}$ $(C2/m)$ and Lu$_{2}$H$_{2}$N ($P\bar{3}m1$), are observed to have small $E_{\rm hull}$ ($ < 100$ meV/atom). It is also found that the energy convex hull of the Lu–H–N system shifts its shape when applying hydrostatic pressure up to 10 GPa, and the external pressure stabilizes a couple of binary phases such as LuN$_{9}$ and Lu$_{10}$H$_{21}$. Additionally, interstitial voids in LuH$_{2}$ are observed, which may explain the formation of Lu$_{10}$H$_{21}$ and LuH$_{3-\delta}$N$_{\epsilon}$. To provide a basis for comparison, x-ray diffraction patterns and electronic structures of some compounds are also presented.
Received: 21 March 2023      Express Letter Published: 07 April 2023
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.25.Bt (Thermodynamic properties)  
  81.30.Bx (Phase diagrams of metals, alloys, and oxides)  
  82.60.-s (Chemical thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/5/057401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I5/057401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fankai Xie
Tenglong Lu
Ze Yu
Yaxian Wang
Zongguo Wang
Sheng Meng
and Miao Liu
[1] Dasenbrock-Gammon N et al. 2023 Nature 615 244
[2] Ming X et al. 2023 arXiv:2303.08759 [cond-mat.supr-con]
[3] Garisto D 2023 Physics 16 40
[4] Zhang S et al. 2023 arXiv:2303.11063 [cond-mat.supr-con]
[5] Shan P et al. 2023 Chin. Phys. Lett. 40 046101
[6] Liu M et al. 2023 arXiv:2303.06554 [cond-mat.supr-con]
[7] Zhou J et al. 2019 Chem. Mater. 31 1860
[8] Zhang T, Cai Z, and Chen S 2020 ACS Appl. Mater. & Interfaces 12 20680
[9] Lu T L et al. 2023 Mater. Futures 2 015001
[10]Website: https://atomly.net
[11] Drozdov A et al. 2019 Nature 569 528
[12] Kong P P et al. 2021 Nat. Commun. 12 5075
[13] Shao M Y et al. 2021 Inorg. Chem. 60 15330
[14] Li Z et al. 2023 arXiv:2303.05117 [cond-mat.supr-con]
[15] Saal J E et al. 2013 JOM 65 1501
[16] Curtarolo S et al. 2012 Comput. Mater. Sci. 58 218
[17] Bo T et al. 2021 J. Phys. Chem. Lett. 12 6667
[18] Jia H et al. 2022 Adv. Sci. 9 e2202756
[19] Sun W H et al. 2019 Nat. Mater. 18 732
[20] Yu Z et al. 2022 Phys. Rev. B 105 214517
[21] Jiang Y T et al. 2022 Chin. Phys. Lett. 39 047402
[22] Werhahn D et al. 2022 Z. Naturforsch. B 77 757
[23] Yang H et al. 2022 arXiv:2211.12264 [cond-mat.supr-con]
[24] Ong S P et al. 2008 Chem. Mater. 20 1798
[25] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[28] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Liang Y Z et al. 2023 Sci. Chin. Mater. 66 343
[31] de Jong M et al. 2015 Sci. Data 2 150009
[32] Jain A et al. 2013 APL Mater. 1 011002
[33] Kirby R J, Scholes G D, and Schoop L M 2022 J. Phys. Chem. Lett. 13 838
[34] Johannsen J C et al. 2013 Phys. Rev. Lett. 111 027403
Related articles from Frontiers Journals
[1] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 057401
[2] X. He, C. L. Zhang, Z. W. Li, S. J. Zhang, B. S. Min, J. Zhang, K. Lu, J. F. Zhao, L. C. Shi, Y. Peng, X. C. Wang, S. M. Feng, J. Song, L. H. Wang, V. B. Prakapenka, S. Chariton, H. Z. Liu, and C. Q. Jin. Superconductivity Observed in Tantalum Polyhydride at High Pressure[J]. Chin. Phys. Lett., 2023, 40(5): 057401
[3] Bing Huang. What Are the Roles of Hydrogen in Infinite-Layer Nickelates?[J]. Chin. Phys. Lett., 2023, 40(5): 057401
[4] Xiaolei Yi, Xiangzhuo Xing, Yan Meng, Nan Zhou, Chunlei Wang, Yue Sun, and Zhixiang Shi. Anomalous Second Magnetization Peak in 12442-Type RbCa$_2$Fe$_4$As$_4$F$_2$ Superconductors[J]. Chin. Phys. Lett., 2023, 40(2): 057401
[5] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 057401
[6] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 057401
[7] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 057401
[8] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 057401
[9] Shuo Li, Shuo Han, Shaohua Yan, Yi Cui, Le Wang, Shanmin Wang, Shanshan Chen, Hechang Lei, Feng Yuan, Jinshan Zhang, and Weiqiang Yu. Pressure-Induced Superconductivity in Flat-Band Kagome Compounds Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$[J]. Chin. Phys. Lett., 2022, 39(6): 057401
[10] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 057401
[11] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 057401
[12] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 057401
[13] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 057401
[14] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 057401
[15] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 057401
Viewed
Full text


Abstract