Chin. Phys. Lett.  2023, Vol. 40 Issue (2): 024201    DOI: 10.1088/0256-307X/40/2/024201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material
Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu*
State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Cite this article:   
Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen et al  2023 Chin. Phys. Lett. 40 024201
Download: PDF(4086KB)   PDF(mobile)(4097KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fiber lasers with different net dispersion cavity values can produce some types of solitons, and rich nonlinear dynamics phenomena can be achieved by selecting different saturable absorbers. A new layered high-entropy van der Waals material (HEX) (Mn,Fe,Co,Ni)PS$_{3}$ was selected as a saturable absorber to achieve a high-power laser output of 34 mW. In addition, the wavelength can be dynamically tuned from 1560 nm to 1531 nm with significant dual-wavelength phenomena at 460 fs pulse duration.
Received: 22 December 2022      Published: 04 February 2023
PACS:  42.55.Wd (Fiber lasers)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.70.Hj (Laser materials)  
  42.70.-a (Optical materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/2/024201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I2/024201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Wen Cui
Xiao-Wei Xing
Yue-Qian Chen
Yue-Jia Xiao
Han Ye
and Wen-Jun Liu
[1] Keller U 2003 Nature 424 831
[2] Cui Y D and Liu X M 2013 Opt. Express 21 18969
[3] Grelu P and Akhmediev N 2012 Nat. Photon. 6 84
[4] Turitsyn S K, Bale B G, and Fedoruk M P 2012 Phys. Rep. 521 135
[5] Oktem B, Ülgüdür C, and Ö I F 2010 Nat. Photon. 4 307
[6] Porsezian K, Hasegawa A, Serkin V N, Belyaeva T L, and Ganapathy R 2007 Phys. Lett. 361 504
[7] Ganapathy R 2012 Commun. Nonlinear Sci. & Numer. Simul. 17 4544
[8] Ma G L, Zhao J B, Zhou Q, Biswas A, and Liu W J 2021 Nonlinear Dyn. 106 2479
[9] Liu W J, Shi T, Liu M L, Wang Q, Liu X M, Zhou Q, Lei M, Lu P F, and Wei Z Y 2021 Opt. Express 29 29402
[10] Peng J S and Zeng H P 2018 Laser & Photon. Rev. 12 1800009
[11] Liu M, Wei Z W, Li H, Li T J, Luo A P, Xu W C, and Luo Z C 2020 Laser & Photon. Rev. 14 1900317
[12] Peng J S and Zeng H P 2019 Phys. Rev. Appl. 12 034052
[13] Chouli S and Grelu P 2010 Phys. Rev. A 81 063829
[14] Chang W, Ankiewicz A, Soto-Crespo J M, and Akhmediev N 2008 Phys. Rev. A 78 023830
[15] Song Y F, Wang Z H, Wang C, Panajotov K, and Zhang H 2020 Adv. Photon. 2 024001
[16] Li K X, Song Y R, Tian J R, Guoyu H Y, and Xu R Q 2017 IEEE Photon. J. 9 1400209
[17] Liu X M and Pang M 2019 Laser & Photon. Rev. 13 1800333
[18] Yan Z, Li X, Tang Y, Shum P P, Yu X, Zhang Y, and Wang Q J 2015 Opt. Express 23 4369
[19] Wang X Z, Wang Z H, Wang Y Y, Zhang X, Song J J, and Wei Z Y 2021 Chin. Phys. Lett. 38 074202
[20] Ni X, Jia K, Wang X, Liu H, Guo J, Huang S W, and Zhu S N 2021 Chin. Phys. Lett. 38 064201
[21] Zhang J, Hua L Q, Chen Z, Zhu M F, Gong C, and Liu X J 2020 Chin. Phys. Lett. 37 124203
[22] Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, and Jiang H F 2020 Chin. Phys. Lett. 37 064202
[23] Stojanovic N and Drescher M 2013 J. Phys. B 46 192001
[24] Guan Z, Wang G L, Zhang L, Jiao Z H, Zhao S F, and Zhou X X 2021 Chin. Phys. Lett. 38 054201
[25] Zhao X, Zheng Z, Liu L, Wang Q, Chen H, and Liu J 2012 Opt. Express 20 25584
[26] Liu W J, Liu M L, Liu X M, Wang X T, Teng H, Lei M, and Wei Z M 2020 Appl. Phys. Lett. 116 061901
[27] Liu W J, Xiong X L, Liu M L, Xing X W, Chen H L, Ye H, Han J F, and Wei Z Y 2022 Appl. Phys. Lett. 120 053108
[28] Liu M, Wu H, Liu X, Wang Y, Lei M, Liu W, and Wei Z 2021 Opto-Electron. Adv. 4 200029
[29] Nizamani B, Salam S, Jafry A A A, Zahir N M, Jurami N, Khudus M A, and Harun S W 2020 Chin. Phys. Lett. 37 054202
[30] Liu J T, Yang F, Lu J P, Ye S, Guo H W, Nie H K, Zhang J L, He J L, Zhang B T, and Ni Z H 2022 Nat. Commun. 13 3855
[31] Yang S, Zheng J C, Qi Y Y, Shi Y W, Li D, Nie X C, and Sun Z P 2023 Opt. Laser Technol. 157 108726
[32] Poddubrovskii N R, Lobach I A, and Kablukov S I 2022 Opt. Laser Technol. 156 108568
[33] Ying T P, Yu T X, Shiah Y S, Li C H, Li J, Qi Y P, and Hosono H 2021 J. Am. Chem. Soc. 143 7042
[34] Gong C and Zhang X 2019 Science 363 eaav4450
[35] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, and Kis A 2017 Nat. Rev. Mater. 2 17033
[36] Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C, and Akinwande D 2017 Nat. Mater. 16 163
[37] Li J, Yang X, Liu Y, Huang B, Wu R, Zhang Z, and Duan X 2020 Nature 579 368
Related articles from Frontiers Journals
[1] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 024201
[2] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 024201
[3] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 024201
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 024201
[5] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 024201
[6] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 024201
[7] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 024201
[8] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 024201
[9] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 024201
[10] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 024201
[11] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 024201
[12] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 024201
[13] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 024201
[14] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 024201
[15] Yue-e Chen, Yun-kai Zhou, De-wang Yang, Wei Yan, Yong Wang. A Temperature-Insensitive Amplified Spontaneous Emission Broadband Source Based on Er-Doped Fiber[J]. Chin. Phys. Lett., 2018, 35(4): 024201
Viewed
Full text


Abstract