Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 076801    DOI: 10.1088/0256-307X/39/7/076801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Infrared Nano-Imaging of Electronic Phase across the Metal–Insulator Transition of NdNiO$_3$ Films
Fanwei Liu1†, Sisi Huang2†, Sidan Chen1, Xinzhong Chen3, Mengkun Liu3, Kuijuan Jin2*, and Xi Chen1*
1State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
Cite this article:   
Fanwei Liu, Sisi Huang, Sidan Chen et al  2022 Chin. Phys. Lett. 39 076801
Download: PDF(2316KB)   PDF(mobile)(2429KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract NdNiO$_3$ is a typical correlated material with temperature-driven metal–insulator transition. Resolving the local electronic phase is crucial in understanding the driving mechanism behind the phase transition. Here we present a nano-infrared study of the metal–insulator transition in NdNiO$_3$ films by a cryogenic scanning near-field optical microscope. The NdNiO$_3$ films undergo a continuous transition without phase coexistence. The nano-infrared signal shows significant temperature dependence and a hysteresis loop. Stripe-like modulation of the optical conductivity is formed in the films and can be attributed to the epitaxial strain. These results provide valuable evidence to understand the coupled electronic and structural transformations in NdNiO$_3$ films at the nano-scale.
Received: 14 April 2022      Editors' Suggestion Published: 17 June 2022
PACS:  68.37.Uv (Near-field scanning microscopy and spectroscopy)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  78.20.-e (Optical properties of bulk materials and thin films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/076801       OR      https://cpl.iphy.ac.cn/Y2022/V39/I7/076801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fanwei Liu
Sisi Huang
Sidan Chen
Xinzhong Chen
Mengkun Liu
Kuijuan Jin
and Xi Chen
[1] Torrance J B, Lacorre P, Nazzal A I, Ansaldo E J, and Niedermayer C 1992 Phys. Rev. B 45 8209
[2] Medarde M L 1997 J. Phys.: Condens. Matter 9 1679
[3] Catalan G 2008 Phase Transit. 81 729
[4] Alonso J A, García-Muñoz J L, Fernández-Díaz M T, Aranda M A G, Martínez-Lope M J, and Casais M T 1999 Phys. Rev. Lett. 82 3871
[5] Johnston S, Mukherjee A, Elfimov I, Berciu M, and Sawatzky G A 2014 Phys. Rev. Lett. 112 106404
[6] Bisogni V, Catalano S, Green R J, Gibert M, Scherwitzl R, Huang Y, Strocov V N, Zubko P, Balandeh S, Triscone J M, Sawatzky G, and Schmitt T 2016 Nat. Commun. 7 13017
[7] Lee S, Chen R, and Balents L 2011 Phys. Rev. Lett. 106 016405
[8] Middey S, Chakhalian J, Mahadevan P, Freeland J W, Millis A J, and Sarma D D 2016 Annu. Rev. Mater. Res. 46 305
[9] Ruppen J, Teyssier J, Ardizzone I, Peil O E, Catalano S, Gibert M, Triscone J M, Georges A, and Van Der Marel D 2017 Phys. Rev. B 96 045120
[10] Mercy A, Bieder J, Íñiguez J, and Ghosez P 2017 Nat. Commun. 8 1677
[11] Caviglia A D, Först M, Scherwitzl R, Khanna V, Bromberger H, Mankowsky R, Singla R, Chuang Y D, Lee W S, Krupin O, Schlotter W F, Turner J J, Dakovski G L, Minitti M P, Robinson J, Scagnoli V, Wilkins S B, Cavill S A, Gibert M, Gariglio S, Z, Triscone J M, Hill J P, Dhesi S S, and Cavalleri A 2013 Phys. Rev. B 88 220401
[12] Gawryluk D J, Klein Y M, Shang T, Sheptyakov D, Keller L, Casati N, Ph L, Fernández-Díaz M T, Rodríguez-Carvajal J, and Medarde M 2019 Phys. Rev. B 100 205137
[13] Zhang J Y, Kim H, Mikheev E, Hauser A J, and Stemmer S 2016 Sci. Rep. 6 1
[14] Catalan G, Bowman R M, and Gregg J M 2000 Phys. Rev. B 62 7892
[15] Xiang P H, Zhong N, Duan C G, Tang X D, Hu Z G, Yang P X, Zhu Z Q, and Chu J H 2013 J. Appl. Phys. 114 243713
[16] Liu J, Kargarian M, Kareev M, Gray B, Ryan P J, Cruz A, Nadeem T, Chuang Y D, Guo J H, Rondinelli J M, Freeland J W, Fiete G A, and Chakhalian J 2013 Nat. Commun. 4 2714
[17] Mattoni G, Zubko P, Maccherozzi F, van der Torren A J, Boltje D B, Hadjimichael M, Manca N, Catalano S, Gibert M, Liu Y, Aarts J, Triscone J M, Dhesi S S, and Caviglia A D 2016 Nat. Commun. 7 13141
[18] Preziosi D, Lopez-Mir L, Li X, Cornelissen T, Lee J H, Trier F, Bouzehouane K, Valencia S, Gloter A, Barthélémy A, and Bibes M 2018 Nano Lett. 18 2226
[19] Post K W, McLeod A S, Hepting M, Bluschke M, Wang Y, Cristiani G, Logvenov G, Charnukha A, Ni G X, Padma R, Minola M, Pasupathy A, Boris A V, Benckiser E, Dahmen K A, Carlson E W, Keimer B, and Basov D N 2018 Nat. Phys. 14 1056
[20] Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Hyun-Tak K, and Basov D N 2007 Science 318 1750
[21] Atkin J M, Berweger S, Jones A C, and Raschke M B 2012 Adv. Phys. 61 745
[22] Liu M K, Wagner M, Abreu E, Kittiwatanakul S, McLeod A, Fei Z, Goldflam M, Dai S, Fogler M M, Lu J, Wolf S A, Averitt R D, and Basov D N 2013 Phys. Rev. Lett. 111 096602
[23] McLeod A S, Van Heumen E, Ramirez J G, Wang S, Saerbeck T, Guenon S, Goldflam M, Anderegg L, Kelly P, Mueller A, Liu M K, Schuller I K, and Basov D N 2017 Nat. Phys. 13 80
[24] Mcleod A S, Zhang J, Gu M Q, Jin F, Zhang G, Post K W, Zhao X G, Millis A J, Wu W B, Rondinelli J M, Averitt R D, and Basov D N 2020 Nat. Mater. 19 397
[25] Kumar D, Rajeev K P, Kushwaha A K, and Budhani R C 2010 J. Appl. Phys. 108 063503
[26] Nec̆as D and Klapetek P 2012 Cent. Eur. J. Phys. 10 181
[27] Katsufuji T, Okimoto Y, Arima T, Tokura Y, and Torrance J B 1995 Phys. Rev. B 51 4830
[28] Stewart M K, Liu J, Kareev M, Chakhalian J, and Basov D N 2011 Phys. Rev. Lett. 107 176401
[29] McLeod A S, Kelly P, Goldflam M D, Gainsforth Z, Westphal A J, Dominguez G, Thiemens M H, Fogler M M, and Basov D N 2014 Phys. Rev. B 90 085136
Related articles from Frontiers Journals
[1] Jing Du, Bosai Lyu, Wanfei Shan, Jiajun Chen, Xianliang Zhou, Jingxu Xie, Aolin Deng, Cheng Hu, Qi Liang, Guibai Xie, Xiaojun Li, Weidong Luo, and Zhiwen Shi. Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(5): 076801
[2] Lele Wang, Bosai Lyu, Qiang Gao, Jiajun Chen, Zhe Ying, Aolin Deng, Zhiwen Shi. Near-Field Optical Identification of Metallic and Semiconducting Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2020, 37(2): 076801
[3] WANG Wen-Jie, DENG Jia-Jun, FU Xing-Qiu, HU Bing, DING Kun. Anomalous Pressure Behavior of N-Cluster Emissions in GaAs0.973Sb0.022N0.005[J]. Chin. Phys. Lett., 2009, 26(12): 076801
[4] HUO Xin, PAN Shi, WU Shi-Fa. Fabrication of Pure Silica Core Multimode Ultraviolet Optical Fibre Probes by Tube Etching[J]. Chin. Phys. Lett., 2007, 24(10): 076801
[5] WU Xiao-Bin, WANG Jia, XU Ji-Ying, WANG Rui, TIAN Qian, YU Jian-Yuan. Near-Field Fluorescence and Topography Characterization of a Single Nanometre Fluorophore by Apertureless Tip-Enhanced Scanning Near-Field Microscopy[J]. Chin. Phys. Lett., 2007, 24(9): 076801
[6] YANG Yu-Ping, YAN Wei, WANG Li. A Reflected Terahertz-Emission Microscopy[J]. Chin. Phys. Lett., 2007, 24(1): 076801
[7] LI Zhi, WANG Shu-Feng, ZHANG Jia-Sen, GONG Qi-Huang. Contrast Reversal of Topography Artifacts in a Transmission SNOM[J]. Chin. Phys. Lett., 2005, 22(9): 076801
[8] XU Tie-Jun, XU Ji-Ying, WANG Jia, TIAN Qian. Optical Field Measurement of Nano-Apertures with a Scanning Near-Field Optical Microscope[J]. Chin. Phys. Lett., 2004, 21(8): 076801
[9] HONG Tao, WANG Jia, XU Tie-Jun, SUN Li-Qun. Direct Measurement of Evanescent Wave Interference with a Scanning Near-field Optical Microscope[J]. Chin. Phys. Lett., 2004, 21(5): 076801
[10] ZHANG Jiang-Ying, MING Hai, WANG Pei, SUN Xiao-Hong, LU Yong-Hua, WU Yun-Xia, XIE Jian-Ping, ZHANG Qi-Jin, LIU Jian, XIE Ai-Fang, ZHANG Ze-Bo, GU Ben-Yuan. Birefringence Grating and Surface Grating in Azobenzene Polymer Liquid Crystal Films Investigated by Near-Field Optical Method[J]. Chin. Phys. Lett., 2003, 20(7): 076801
Viewed
Full text


Abstract