CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
First-Principles Calculations about Elastic and Li$^{+}$ Transport Properties of Lithium Superoxides under High Pressure and High Temperature |
Yufeng Li1,2, Shichuan Sun1,2, Yu He1,2,3*, and Heping Li1,2 |
1Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
|
|
Cite this article: |
Yufeng Li, Shichuan Sun, Yu He et al 2022 Chin. Phys. Lett. 39 026101 |
|
|
Abstract Lithium superoxides, Li$_{2}$O$_{3}$, LiO$_{2}$, and LiO$_{4}$, have been synthesized under high pressure. These materials have potential applications in energy storage devices. Here, we use first-principles calculations to investigate the elastic and Li$^{+}$ transport properties of these oxides at high pressure and high temperature. The elastic constants are calculated at 20–80 GPa, and they satisfy the Born stability criteria, indicating the good mechanical stability of these oxides. Their sound velocities calculated with elastic constants are close to each other, but difference in velocity anisotropy is obvious. LiO$_{2}$ presents significant shear sound wave anisotropy over 80%. The Li$^{+}$ transport properties are investigated using first principles molecular dynamics (FPMD) and climbing-image nudged elastic band methods. The lowest Li$^{+}$ migration barrier energies increase from 0.93, 0.86 and 1.22 eV at 20 GPa to 1.43, 1.12 and 1.77 eV at 50 GPa for Li$_{2}$O$_{3}$, LiO$_{2}$, and LiO$_{4}$, respectively. The most favorable path for LiO$_{2}$ and LiO$_{4}$ is along the [001] direction. The FPMD results suggest that these oxides become unstable with increasing temperature up to 2000 K due to O–O dimer clusters in these superoxides. Consequently, a superionic transition is not observed in the simulations.
|
|
Received: 26 October 2021
Editors' Suggestion
Published: 29 January 2022
|
|
|
|
|
|
[1] | Badding J V 1998 Annu. Rev. Mater. Sci. 28 631 |
[2] | Paul F and M 2002 Nat. Mater. 1 19 |
[3] | Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, and Dias P 2020 Nature 586 373 |
[4] | Millot M and Coppari F 2019 Nature 569 251 |
[5] | Hou M Q, He Y, Jang B G, Sun S C, Zhuang Y K, Deng L W, Tang R L, Chen J H, Ke F, Meng Y, Prakapenka V B, Chen B, Shim J H, Liu J, Kim D Y, Hu Q Y, Pickard C J, Needs R J, and Mao H K 2021 Nat. Geosci. 14 174 |
[6] | García-Moreno O, Alvarez-Vega M, García-Alvarado F, García-Jaca J, Gallardo-Amores J M, Sanjuán M L, and Amador U 2001 Chem. Mater. 13 1570 |
[7] | Amador U, Gallardo-Amores J M, Heymann G, Huppertz H, Morán E, and Arroyo-de Dompablo M E 2009 Solid State Sci. 11 343 |
[8] | Wang X, Loa I, Kunc K, Syassen K, and Amboage M 2005 Phys. Rev. B 72 224102 |
[9] | Fell C R, Lee D H, Meng Y S, Gallardo-Amores J M, Moran E, and Arroyo-de Dompablo M E 2012 Energy & Environ. Sci. 5 6214 |
[10] | Piszora P, Nowicki W, and Darul J 2008 J. Mater. Chem. 18 2447 |
[11] | Yamaura K, Huang Q Z, Zhang L Q, Takada K, Baba Y, Nagai T, Matsui Y, Kosuda K, and Takayama-Muromachi E 2006 J. Am. Chem. Soc. 128 9448 |
[12] | Huang Y W, He Y, Sheng H, Lu X, Dong H N, Samanta S, Dong H L, Li X F, Kim D Y, Mao H K, Liu Y Z, Li H P, Li H, and Wang L 2019 Natl. Sci. Rev. 6 239 |
[13] | Yang W G, Kim D Y, Yang L X, Li N N, Tang L Y, Amine K, and Mao H K 2017 Adv. Sci. 4 1600453 |
[14] | Lundegaard L F, Weck G, Mcmahon M I, Desgreniers S, and Loubeyre P 2006 Nature 443 201 |
[15] | Meng Y, Eng P J, Tse J S, Shaw D M, Hu M Y, Shu J, Gramsch S A, Kao C, Hemley R J, and Mao H K 2008 Proc. Natl. Acad. Sci. USA 105 11640 |
[16] | Dong X, Hou J Y, Kong J, Cui H X, Li Y L, Oganov A R, Li K, Zheng H Y, Zhou X F, and Wang H T 2019 Phys. Rev. B 100 144104 |
[17] | Stixrude L, Cohen R E, and Hemley R J 1998 Rev. Mineral. Geochem. 37 639 |
[18] | Kresse G 1995 J. Non-Cryst. Solids 192 222 |
[19] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[20] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[21] | Perdew J and Zunger A 1981 Phys. Rev. B 23 5048 |
[22] | He Y, Sun S, and Li H P 2021 Phys. Rev. B 103 174105 |
[23] | Mouhat F and Coudert F X 2014 Phys. Rev. 90 224104 |
[24] | Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Teubner) (in Germany) |
[25] | Reuss A 1929 Z. Angew. Math. Mech. 9 49 |
[26] | Hill B R 1952 Proc. Phys. Soc. A 65 349 |
[27] | Anderson D 1989 Theory of the Earth (Boston: Blackwell Scientific) |
[28] | Karki B B, Stixrude L, Clark S J, Warren M C, Ackland G J, and Crain J 1997 Am. Mineral. 82 51 |
[29] | Mainprice D, Hielscher R, and Schaeben H 2011 Geological Society London Special Publications 360 175 |
[30] | Henkelman G B, Uberuaga P, and Jónsson H 2000 J. Chem. Phys. 113 9901 |
[31] | Bühl M and Kabrede H 2006 ChemPhysChem 7 2290 |
[32] | Allen M P and Tildesley D J 1991 Computer Simulation of Liquids (New York: Oxford University Press) |
[33] | Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196 |
[34] | Parrinello N and Rahman A 1981 J. Appl. Phys. 52 7182 |
[35] | Sun S C and He Y 2019 Phys. Chem. Miner. 46 935 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|