Chin. Phys. Lett.  2021, Vol. 38 Issue (10): 107402    DOI: 10.1088/0256-307X/38/10/107402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy
Jiao-Jiao Song1, Yang Luo1, Chen Zhang1, Qi-Yi Wu1, Tomasz Durakiewicz2, Yasmine Sassa3,4, Oscar Tjernberg5, Martin Månsson5, Magnus H. Berntsen5, Yin-Zou Zhao1, Hao Liu1, Shuang-Xing Zhu1, Zi-Teng Liu1, Fan-Ying Wu1, Shu-Yu Liu1, Eric D. Bauer6, Ján Rusz3, Peter M. Oppeneer3, Ya-Hua Yuan1, Yu-Xia Duan1, and Jian-Qiao Meng1*
1School of Physics and Electronics, Central South University, Changsha 410083, China
2Institute of Physics, Maria Curie Sklodowska University, 20-031 Lublin, Poland
3Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
4Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden
5Department of Applied Physics, KTH Royal Institute of Technology, AlbaNova Universitetscentrum, 106 91 Stockholm, Sweden
6Condensed Matter and Magnet Science Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Cite this article:   
Jiao-Jiao Song, Yang Luo, Chen Zhang et al  2021 Chin. Phys. Lett. 38 107402
Download: PDF(794KB)   PDF(mobile)(886KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We systemically investigate the nature of Ce 4$f$ electrons in structurally layered heavy-fermion compounds Ce$_m$$M$$_n$In$_{3m+2n}$ (with $M$ = Co, Rh, Ir, and Pt, $m=1$, 2, $n=0$–2), at low temperature using on-resonance angle-resolved photoemission spectroscopy. Three heavy quasiparticle bands $f^0$, $f^1_{7/2}$ and $f^1_{5/2}$, are observed in all compounds, whereas their intensities and energy locations vary greatly with materials. The strong $f^0$ states imply that the localized electron behavior dominates the Ce 4$f$ states. The Ce 4$f$ electrons are partially hybridized with the conduction electrons, making them have the dual nature of localization and itinerancy. Our quantitative comparison reveals that the $f^1_{5/2}$–$f^0$ intensity ratio is more suitable to reflect the $4f$-state hybridization strength.
Received: 20 August 2021      Editors Suggestion Published: 26 September 2021
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.70.Tx (Heavy-fermion superconductors)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 12074436 and 11574402), and the Innovation-Driven Plan in Central South University (Grant No. 2016CXS032). J.R. and P.M.O. acknowledge support through the Swedish Research Council (VR) and the Swedish National Infrastructure for Computing (SNIC), for computing time on computer cluster Triolith at the NSC center Link?ping (supported by VR Grant No. 2018-05973). Y.S. acknowledges the support from the Swedish Research Council (VR) through a Starting Grant (No. Dnr. 2017-05078). O.T. acknowledges support from the Swedish Research Council (VR) and the Knut and Alice Wallenberg foundation. M.M. is partly supported by a Marie Sklodowska-Curie Action, International Career Grant through the European Commission and Swedish Research Council (VR) (Grant No. INCA-2014-6426), as well as a VR neutron project (Grant No. BIFROST, Dnr. 2016-06955). Further support was also granted by the Carl Tryggers Foundation for Scientific Research (Grant Nos. CTS-16:324 and CTS-17:325). Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/10/107402       OR      https://cpl.iphy.ac.cn/Y2021/V38/I10/107402
[1] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, and Chäfer H 1979 Phys. Rev. Lett. 43 1892
[2] Aproberts-Warren N, Dioguardi A P, Shockley A C, Lin C H, Crocker J, Klavins P, and Curro N J 2010 Phys. Rev. B 81 180403(R)
[3] Sidorov V A, Nicklas M, Pagliuso P G, Sarrao J L, Bang Y, Balatsky A V, and Thompson J D 2002 Phys. Rev. Lett. 89 157004
[4] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, and Lonzarich G G 1998 Nature 394 39
[5] Monthoux P and Lonzarich G G 2001 Phys. Rev. B 63 054529
[6] Monthoux P and Lonzarich G G 2002 Phys. Rev. B 66 224504
[7] Haule K, Yee C, and Kim K 2010 Phys. Rev. B 81 195107
[8] Pagliuso P G, Movshovich R, Bianchi A D, Nicklas M, Moreno N O, Thompson J D, Hundley M F, Sarrao J L, and Fisk Z 2002 Physica B 312–313 129
[9] Bauer E D, Thompson J D, Sarrao J L, Morales L A, Wastin F, Rebizant J, Griveau J C, Javorsky P, Boulet P, Colineau E, Lander G H, and Stewart G R 2004 Phys. Rev. Lett. 93 147005
[10] Dix O M, Swartz A G, Zieve R J, Cooley J, Sayles T R, and Maple M B 2009 Phys. Rev. Lett. 102 197001
[11] Koitzsch A, Borisenko S, Inosov D, Geck J, Zabolotnyy V B, Shiozawa H, Knupfer M, Fink J, Buechner B, Bauer E D, Sarrao J L, and Follath R 2007 Physica C 460–462 666
[12] Götze K, Klotz J, Gnida D, Harima H, Aoki D, Demuer A, Elgazzar S, Wosnitza J, Kaczorowski D, and Sheikin I 2015 Phys. Rev. B 92 115141
[13] Duan Y X, Zhang C, Rusz J, Oppeneer P M, Durakiewicz T, Sassa Y, Tjernberg O, Månsson M, Berntsen M H, Wu F Y, Zhao Y, Song J J, Wu Q Y, Luo Y, Bauer E D, Thompson J D, and Meng J Q 2019 Phys. Rev. B 100 085141
[14] Patil S, Generalov A, Güttler M, Kushwaha P, Chikina A, Kummer K, Rödel T C, Santander-Syro A F, Caroca-Canales N, Geibel C, Danzenbächer S, Kucherenko Y, Laubschat C, Allen J W, and Vyalikh D V 2016 Nat. Commun. 7 11029
[15] Yao Q, Kaczorowski D, Swatek P, Gnida D, Wen C H P, Niu X H, Peng R, Xu H C, Dudin P, Kirchner S, Chen Q Y, Shen D W, and Feng D L 2019 Phys. Rev. B 99 081107(R)
[16] Yuan Y H, Duan Y X, Rusz J, Zhang C, Song J J, Wu Q Y, Sassa Y, Tjernberg O, Månsson M, Berntsen M H, Wu F Y, Liu S Y, Liu H, Zhu S X, Liu Z T, Zhao Y Z, Tobash P H, Bauer E D, Thompson J D, Oppeneer P M, Durakiewicz T, and Meng J Q 2021 Phys. Rev. B 103 125122
[17] Zhang Y, Feng W, Lou X, Yu T L, Zhu X G, Tan S Y, Yuan B K, Liu Y, Lu H Y, Xie D H, Liu Q, Zhang W, Luo X B, Huang Y B, Luo L Z, Zhang Z J, Lai X C, and Chen Q Y 2018 Phys. Rev. B 97 045128
[18] Liu H J, Xu Y J, Zhong Y G, Guan J Y, Kong L Y, Ma J Z, Huang Y B, Chen Q Y, Chen G F, Shi M, Yang Y F, and Ding H 2019 Chin. Phys. Lett. 36 097101
[19] Chen Q Y, Xu D F, Niu X H, Jiang J, Peng R, Xu H C, Wen C H P, Ding Z F, Huang K, Shu L, Zhang Y J, Lee H, Strocov V N, Shi M, Bisti F, Schmitt T, Huang Y B, Dudin P, Lai X C, Kirchner S, Yuan H Q, and Feng D L 2017 Phys. Rev. B 96 045107
[20] Chen Q Y, Wen C H P, Yao Q, Huang K, Ding Z F, Shu L, Niu X H, Zhang Y, Lai X C, Huang Y B, Zhang G B, Kirchner S, and Feng D L 2018 Phys. Rev. B 97 075149
[21] Chen Q Y, Xu D F, Niu X H, Peng R, Xu H C, Wen C H P, Liu X, Shu L, Tan S Y, Lai X C, Zhang Y J, Lee H, Strocov V N, Bisti F, Dudin P, Zhu J X, Yuan H Q, Kirchner S, and Feng D L 2018 Phys. Rev. Lett. 120 066403
[22] Koitzsch A, Borisenko S V, Inosov D, Geck J, Zabolotnyy V B, Shiozawa H, Knupfer M, Fink J, Buechner B, Bauer E D, Sarrao J L, and Follath R 2008 Phys. Rev. B 77 155128
[23] Luo Y, Zhang C, Wu Q Y, Wu F Y, Song J J, Xia W, Guo Y F, Rusz J, Oppeneer P M, Durakiewicz T, Zhao Y Z, Liu H, Zhu S X, Yuan Y H, Tang X F, He J, Tan S Y, Huang Y B, Sun Z, Liu Y, Liu H Y, Duan Y X, and Meng J Q 2020 Phys. Rev. B 101 115129
[24] Gunnarsson O and Schönhammer K 1983 Phys. Rev. B 28 4315
[25] Fujimori S, Okane T, Okamoto J, Mamiya K, Muramatsu Y, Fujimori A, Harima H, Aoki D, Ikeda S, Shishido H, Tokiwa Y, Haga Y, and Ōnuki Y 2003 Phys. Rev. B 67 144507
[26] Raj S, Iida Y, Souma S, Sato T, Takahashi T, Ding H, Ohara S, Hayakawa T, Chen G F, Sakamoto I, and Harima H 2005 Phys. Rev. B 71 224516
[27] Satoh K, Fujimaki Y, Umehara I, Itoh J, Ōnuki Y, and Kasaya M 1993 Physica B 186–188 658
[28] Lawrence J M and Shapiro S M 1980 Phys. Rev. B 22 4379
[29] Buschow K H J, de Wijn H W, and van Diepen A M 1969 J. Chem. Phys. 50 137
[30] Thompson J D, Movshovich R, Fisk Z, Bouquet F, Curro N J, Fisher R A, Hammel P C, Hegger H, Hundley M F, Jaime M, Pagliuso P G, Petrovic C, Phillips N E, and Sarrao J L 2001 J. Magn. Magn. Mater. 226–230 5
[31] Macaluso R T, Sarrao J L, Moreno N O, Pagliuso P G, Thompson J D, Fronczek F R, Hundley M F, Malinowski A, and Chan J Y 2003 Chem. Mater. 15 1394
[32] Nicklas M, Sidorov V A, Borges H A, Pagliuso P G, Petrovic C, Fisk Z, Sarrao J L, and Thompson J D 2003 Phys. Rev. B 67 020506
[33] Petrovic C, Pagliuso P G, Hundley M F, Movshovich R, Sarrao J L, Thompson J D, Fisk Z, and Monthoux P 2001 J. Phys.: Condens. Matter 13 L337
[34]Kalychak Y M, Zaremba V I, Baranyak V M, Bruskov V A, and Zavalii P Y 1989 Russian Metallurgy 1 213
[35] Petrovic C, Movshovich R, Jaime M, Pagliuso P G, Hundley M F, Sarrao J L, Fisk Z, and Thompson J D 2001 Europhys. Lett. 53 354
[36] Paglione J, Ho P C, Maple M B, Tanatar M A, Taillefer L, Lee Y, and Petrovic C 2008 Phys. Rev. B 77 100505(R)
[37] Hegger H, Petrovic C, Moshopoulou E G, Hundley M F, Sarrao J L, Fisk Z, and Thompson J D 2000 Phys. Rev. Lett. 84 4986
[38] Tobash P H, Ronning F, Thompson J D, Scott B L, Moll P J W, Batlogg B, and Bauer E D 2012 J. Phys.: Condens. Matter 24 015601
[39] Bauer E D, Lee H O, Sidorov V A, Kurita N, Gofryk K, Zhu J X, Ronning F, Movshovich R, Thompson J D, and Park T 2010 Phys. Rev. B 81 180507(R)
[40] Kurenbaeva Z M, Murashova E V, Seropegin Y D, Noel H, and Tursina A I 2008 Intermetallics 16 979
[41] Morris G D, Heffner R H, Moreno N O, Pagliuso P G, Sarrao J L, Dunsiger S R, Nieuwenhuys G J, Maclaughlin D E, and Bernal O O 2004 Phys. Rev. B 69 214415
[42] Malinowski A, Hundley M F, Moreno N O, Pagliuso P G, Sarrao J L, and Thompson J D 2003 Phys. Rev. B 68 184419
[43] Souma S, Raj S, Campuzano J C, Sato T, Takahashi T, Ohara S, and Sakamoto S 2008 Physica B 403 752
[44] Jiang R, Mou D X, Liu C, Zhao X, Yao Y X, Ryu H, Petrovic C, Ho K M, and Kaminski A 2015 Phys. Rev. B 91 165101
[45] Singley E J, Basov D N, Bauer E D, and Maple M B 2002 Phys. Rev. B 65 161101(R)
[46] Shishido H, Settai R, Aoki D, Ikeda S, Nakawaki H, Nakamura N, Iizuka T, Inada Y, Sugiyama K, Takeuchi T, Kindo K, Kobayashi T C, Haga Y, Harima H, Aoki Y, Namiki T, Sato H, and Ōnuki Y 2002 J. Phys. Soc. Jpn. 71 162
[47] Elgazzar S, Opahle I, Hayn R, and Oppeneer P M 2004 Phys. Rev. B 69 214510
[48] Allan M P, Chuang T, Massee F, Xie Y, Ni N, Bud K S L, Boebinger G S, Wang Q, Dessau D S, Canfield P C, Golden M S, and Davis J C 2013 Nat. Phys. 9 468
[49] Zhou B B, Misra S, Da S N E H, Aynajian P, Baumbach R E, Thompson J D, Bauer E D, and Yazdani A 2013 Nat. Phys. 9 474
[50] Koitzsch A, Opahle I, Elgazzar S, Borisenko S V, Geck J, Zabolotnyy V B, Inosov D, Shiozawa H, Richter M, Knupfer M, Fink J, Büchner B, Bauer E D, Sarrao J L, and Follath R 2009 Phys. Rev. B 79 075104
[51] Fujimori S 2016 J. Phys.: Condens. Matter 28 153002
[52] Harrison N, Alver U, Goodrich R G, Vekhter I, Sarrao J L, Pagliuso P G, Moreno N O, Balicas L, Fisk Z, Hall D, Macaluso R T, and Chan J Y 2004 Phys. Rev. Lett. 93 186405
[53] Fujimori S, Fujimori A, Shimada K, Narimura T, Kobayashi K, Namatame H, Taniguchi M, Harima H, Shishido H, Ikeda S, Aoki D, Tokiwa Y, Haga Y, and Ōnuki Y 2006 Phys. Rev. B 73 224517
[54] Rusz J, Oppeneer P M, Curro N J, Urbano R R, Young B, Lebegue S, Pagliuso P G, Pham L D, Bauer E D, Sarrao J L, and Fisk Z 2008 Phys. Rev. B 77 245124
[55] Moore D P, Durakiewicz T, Joyce J J, Arko A J, Morales L A, Sarrao J L, Pagliuso P G, Wills J M, and Olson C G 2002 Physica B 312–313 134
[56] Altarawneh M M, Harrison N, Mcdonald R D, Balakirev F F, Mielke C H, Tobash P H, Zhu J X, Thompson J D, Ronning F, and Bauer E D 2011 Phys. Rev. B 83 081103(R)
[57] Shen B, Yu L, Liu K, Lyu S, Jia X, Bauer E D, Thompson J D, Zhang Y, Wang C, Hu C, Ding Y, Sun X, Hu Y, Liu J, Gao Q, Zhao L, Liu G, Xu Z, Chen C, Lu Z, and Zhou X J 2017 Chin. Phys. B 26 077401
[58] Li P, Wu Z Z, Wu F, Guo C Y, Liu Y, Liu H J, Sun Z, Shi M, Rodolakis F, Mcchesney J L, Cao C, Yuan H Q, Steglich F, and Liu Y 2019 Phys. Rev. B 100 155110
Viewed
Full text


Abstract