GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
|
|
|
|
Site-Selective Magnetic Moment Collapse in Compressed Fe$_{5}$O$_{6}$ |
Qiao-Ying Qin1†, Ai-Qin Yang1†, Xiang-Ru Tao1, Liu-Xiang Yang2, Hui-Yang Gou2*, and Peng Zhang1* |
1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China 2Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
|
|
Cite this article: |
Qiao-Ying Qin, Ai-Qin Yang, Xiang-Ru Tao et al 2021 Chin. Phys. Lett. 38 089101 |
|
|
Abstract Iron oxide is one of the most important components in the Earth's mantle. The recent discovery of the stable presence of Fe$_{5}$O$_{6}$ in the Earth's mantle environment has stimulated significant interests in understanding of this new category of iron oxides. We report the electronic structure and magnetic properties of Fe$_{5}$O$_{6}$ calculated by the density functional theory plus dynamic mean field theory (DFT + DMFT) approach. Our calculations indicate that Fe$_{5}$O$_{6}$ is a conductor at ambient pressure with dominant Fe-$3d$ density of states at the Fermi level. The magnetic moments of iron atoms at three non-equivalent crystallographic sites in Fe$_{5}$O$_{6}$ collapse at significantly different rates under pressure. This site-selective collapse of magnetic moments originates from the shifting of energy levels and the consequent charge transfer among the Fe-$3d$ orbits when Fe$_{5}$O$_{6}$ is being compressed. Our simulations suggest that there could be high conductivity and volume contraction in Fe$_{5}$O$_{6}$ at high pressure, which may induce anomalous features in seismic velocity, energy exchange, and mass distribution in the deep interior of the Earth.
|
|
Received: 04 May 2021
Published: 02 August 2021
|
|
PACS: |
75.40.Mg
|
(Numerical simulation studies)
|
|
91.60.Gf
|
(High-pressure behavior)
|
|
91.60.Pn
|
(Magnetic and electrical properties)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11604255 and U1930401), and the Natural Science Basic Research Program of Shaanxi (Grant No. 2021JM-001). |
|
|
[1] | Crane R A and Scott T B 2013 J. Nanotechnol. 2013 173625 |
[2] | Cornell R M and Schwertmann U 2004 The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses 2nd edn (New York: Wiley-VCH Verlag) |
[3] | Wood B J, Bryndzia L T, and Johnson K E 1990 Science 248 337 |
[4] | Cornell R M and Schwertmann U 2004 The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses 2nd edn (New York: Wiley-VCH Verlag) p 1 |
[5] | Rosales S, Casillas N, Topete A, Cervantes O, Gonzalez G, Paz J A, and Cano M E 2020 Chin. Phys. B 29 100502 |
[6] | Hua L Z, Xiang L, and Wei L 2019 Chin. Phys. B 28 077504 |
[7] | Yu W Q, Qiu Y C, Xiao H J, Yang H T, and Wang G M 2019 Chin. Phys. B 28 108103 |
[8] | Wenjun Y, Xiaomin Z, Huan L, Chunwei G, Min L, and Houpan Z 2019 Chin. Phys. B 28 106801 |
[9] | Yang Y, Zhang Q, Mi W, and Zhang X 2020 Chin. Phys. B 29 083302 |
[10] | Hu Q Y, Kim D Y, Yang W G, Yang L X, and Meng Y 2016 Nature 534 241 |
[11] | Nishi M, Kuwayama Y, Tsuchiya J, and Tsuchiya T 2017 Nature 547 205 |
[12] | Lavina B, Dera P, Kim E, Meng Y, and Downs R T 2011 Proc. Natl. Acad. Sci. USA 108 17281 |
[13] | Lavina B and Meng Y 2015 Sci. Adv. 1 e1400260 |
[14] | Zhang X L, Niu Z W, Tang M, Zhao J Z, and Cai L C 2017 J. Alloys Compd. 719 42 |
[15] | Sinmyo R, Bykova E, Ovsyannikov S V, McCammon C, and Kupenko I 2016 Sci. Rep. 6 32852 |
[16] | Merlini M, Hanfland M, Salamat A, Petitgirard S, and Müller H 2015 Am. Mineral. 100 2001 |
[17] | Koutaro H, Ryosuke S, Kei H, Takayuki I, and Yasuo O 2019 Am. Mineral. 104 1356 |
[18] | Ovsyannikov S V, Maxim B, Medvedev S A, and Naumov P G 2020 Angew. Chem. 59 5632 |
[19] | Kotliar G 2006 Rev. Mod. Phys. 78 865 |
[20] | Blaha P, Schwarz K, Madsen G K H, Kvasnick K, and Luitz J 2001 Wien2K ed Schwarz K (Technische Universitat Wien) |
[21] | Wu Z G and Cohen R E 2006 Phys. Rev. B 73 235116 |
[22] | Haule K 2015 Phys. Rev. Lett. 115 196403 |
[23] | Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M, and Werner P 2011 Rev. Mod. Phys. 83 349 |
[24] | Werner P, Comanac A, and de'Medici L 2006 Phys. Rev. Lett. 97 076405 |
[25] | Haule K 2007 Phys. Rev. B 75 155113 |
[26] | Georges A, Kotliar G, Krauth W, and Rozenberg M J 1996 Rev. Mod. Phys. 68 13 |
[27] | Madsen G K H and Novak P 2005 Europhys. Lett. 69 777 |
[28] | Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133 |
[29] | Bo G J, Kim D Y, and Ji H S 2017 Phys. Rev. B 95 075144 |
[30] | Koemets E 2021 Phys. Rev. Lett. 126 106001 |
[31] | Cohen R E, Mazin I I, and Isaak D G 1997 Science 275 654 |
[32] | Eran G 2018 Phys. Rev. X 8 031059 |
[33] | Kunes J, Korotin D M, Korotin M A, Anisimov V I, and Werner P 2009 Phys. Rev. Lett. 102 146402 |
[34] | Kunes J, Lukoyanov A V, Anisimov V I, Scalettar R T, and Pickett W E 2008 Nat. Mater. 7 198 |
[35] | Ohta K, Cohen R E, Hirose K, Haule K, Shimizu K, and Ohishi Y 2012 Phys. Rev. Lett. 108 026403 |
[36] | Leonov I 2015 Phys. Rev. B 92 085142 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|