Chin. Phys. Lett.  2021, Vol. 38 Issue (8): 080201    DOI: 10.1088/0256-307X/38/8/080201
GENERAL |
Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation
Kai-Hua Yin1, Xue-Ping Cheng1,2*, and Ji Lin3
1School of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan 316022, China
2Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province, Zhoushan 316022, China
3Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004, China
Cite this article:   
Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin 2021 Chin. Phys. Lett. 38 080201
Download: PDF(892KB)   PDF(mobile)(1011KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Starting from a general sixth-order nonlinear wave equation, we present its multiple kink solutions, which are related to the famous Hirota form. We also investigate the restrictions on the coefficients of this wave equation for possessing multiple kink structures. By introducing the velocity resonance mechanism to the multiple kink solutions, we obtain the soliton molecule solution and the breather-soliton molecule solution of the sixth-order nonlinear wave equation with particular coefficients. The three-dimensional image and the density map of these soliton molecule solutions with certain choices of the involved free parameters are well exhibited. After matching the parametric restrictions of the sixth-order nonlinear wave equation for having three-kink solution with the coefficients of the integrable bidirectional Sawada–Kotera–Caudrey–Dodd–Gibbons (SKCDG) equation, the breather-soliton molecule solution for the bidirectional SKCDG equation is also illustrated.
Received: 17 March 2021      Published: 02 August 2021
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11975204, 11835011, and 12075208), the Natural Science Foundation of Zhejiang Province (Grant No. LY19A050003), and the Project of Zhoushan City Science and Technology Bureau (Grant No. 2021C21015).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/8/080201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I8/080201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kai-Hua Yin
Xue-Ping Cheng
and Ji Lin
[1] Karasu-Kalkanlı A, Karasu A, Sakovich A, Sakovich S, and Turhan R 2008 J. Math. Phys. 49 073516
[2] Sawada K and Kotera T 1974 Prog. Theor. Phys. 51 1355
[3] Caudrey P J, Dodd R K, and Gibbon J D 1976 Proc. R. Soc. London Ser. A 351 407
[4] Dye J M and Parker A 2001 J. Math. Phys. 42 2567
[5] He J S, Cheng Y, and Römer R A 2006 J. High Energy Phys. 2006(03) 103
[6] Ma Y L and Geng X G 2012 Appl. Math. Comput. 218 6963
[7] Lai X J and Cai X O 2010 Z. Naturforsch. A 65 658
[8] Yang Y Q and Chen Y 2011 Commun. Theor. Phys. 55 25
[9] Geng X G, Wu L H, and He G L 2013 J. Nonlinear Sci. 23 527
[10] Han P and Lou S Y 1993 Chin. Phys. Lett. 10 257
[11] Karasu-Kalkanlı A and Yu S S 2001 J. Phys. A 34 7355
[12] Heris J M and Lakestani M 2014 J. At. Mol. Phys. 2014 840689
[13] Huang L L and Chen Y 2017 Appl. Math. Lett. 64 177
[14] Kupershmidt B A 2008 Phys. Lett. A 372 2634
[15] Mohammad M, Mostafa E, and Anjan B 2015 Nonlinear Dyn. 80 387
[16] Zhao Z L, Chen Y, and Han B 2017 Optik 140 10
[17]Geng X G and Xue B 2012 Appl. Math. Comput. 219 3504
[18] Verhoeven C and Musette M 2003 J. Phys. A 36 L133
[19] Verhoeven C and Musette M 2001 J. Phys. A 34 L721
[20] Dye J M and Parker A 2002 J. Math. Phys. 43 4921
[21] Verhoeven C 2004 J. Phys. A 37 10625
[22] Malomed B A 1991 Phys. Rev. A 44 6954
[23] Malomed B A 1992 Phys. Rev. A 45 R8321
[24] Tang D Y, Man W S, Tam H Y, and Drummond P D 2001 Phys. Rev. A 64 033814
[25] Tsatourian V, Sergeyev S V, Mou C B, Rozhin A, Mikhailov V, Rabin B, Westbrook P S, and Turitsyn S K 2013 Sci. Rep. 3 3154
[26] Peng J, Zhan L, Luo S, and Shen Q S 2013 IEEE Photon. Technol. Lett. 25 948
[27] Wang P, Bao C Y, Fu B, Xiao X S, Grelu P, and Yang C X 2016 Opt. Lett. 41 2254
[28] Herink G, Kurtz F, Jalali B, Solli D R, and Ropers C 2017 Science 356 50
[29] Liu X M, Yao X K, and Cui Y D 2018 Phys. Rev. Lett. 121 023905
[30] Peng J, Boscolo S, Zhao Z, and Zeng H 2019 Sci. Adv. 5 eaax1110
[31] Łakomy K, Nath R, and Santos L 2012 Phys. Rev. A 85 033618
[32] Łakomy K, Nath R, and Santos L 2012 Phys. Rev. A 86 013610
[33] Marin F and Ezersky A B 2008 Eur. J. Mech. B 27 251
[34] Lou S Y 2019 arXiv:1909.03399 [nlin.SI]
[35] Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese)
[36] Zhang Z, Yang S X, and Li B 2019 Chin. Phys. Lett. 36 120501
[37] Yan Z W and Lou S Y 2020 Appl. Math. Lett. 104 106271
[38] Cheng X P, Lou S Y, and Yang Y Q 2020 Results Phys. 18 103184
[39] Jia M, Lin J, and Lou S Y 2020 Nonlinear Dyn. 100 3745
[40] Wang W, Yao R X, and Lou S Y 2020 Chin. Phys. Lett. 37 100501
[41] Ren B 2021 Commun. Theor. Phys. 73 035003
[42] Zhang Z, Yang S X, and Li B 2020 Appl. Math. Lett. 103 106168
[43] Zhang Z, Yang X Y, and Li B 2020 Nonlinear Dyn. 100 1551
Viewed
Full text


Abstract