CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$ |
Jun-Yi Miao1,2, Zhan-Sheng Lu1, Feng Peng2,1*, and Cheng Lu3* |
1School of Physics, Henan Normal University, Xinxiang 453007, China 2College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, China 3School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
|
|
Cite this article: |
Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng et al 2021 Chin. Phys. Lett. 38 066201 |
|
|
Abstract Polymeric nitrogen is a promising candidate for a high-energy-density material. Synthesis of energetic compounds with high chemical stability under ambient conditions is still a challenging problem. Here we report a theoretical study on yttrium nitrides by first principles calculations combined with an effective crystal structure search method. It is found that many yttrium nitrides with high nitrogen content can be formed under relatively moderate pressures. The results indicate that the nitrogen-rich YN$_{5}$ and YN$_{8}$ compounds are recoverable as metastable high-energy materials under ambient conditions, and can release enormous energies (2.51 kJ$\cdot$g$^{-1}$ and 3.18 kJ$\cdot$g$^{-1}$) while decomposing to molecular nitrogen and YN. Our findings enrich the family of transition metal nitrides, and open avenues for design and synthesis of novel high-energy-density materials.
|
|
Received: 11 March 2021
Published: 25 May 2021
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11774140, U1804121, and 11304167), and China Postdoctoral Science Foundation (Grant No. 2016M590033). |
|
|
[1] | Christe K O, Wilson W W, Sheehy J A, and Boatz J A 1999 Angew. Chem. Int. Ed. 38 2004 |
[2] | Zahariev F, Dudiy S, Hooper J, Zhang F et al. 2006 Phys. Rev. Lett. 97 155503 |
[3] | Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A et al. 2004 Nat. Mater. 3 558 |
[4] | Gregoryanz E, Goncharov A F, Sanloup C, and Metal S 2007 J. Chem. Phys. 126 184505 |
[5] | Jiang S, Holtgrewe N, Lobanov S S, Su F, Mahmood M F et al. 2018 Nat. Commun. 9 2624 |
[6] | Lei L, Tang Q, Zhang F, Liu S et al. 2020 Chin. Phys. Lett. 37 068101 |
[7] | Peng F, Yao Y, Liu H, and Ma Y 2015 J. Phys. Chem. Lett. 6 2363 |
[8] | Peng F, Han Y, Liu H, and Yao Y 2015 Sci. Rep. 5 16902 |
[9] | Zhu S, Peng F, Liu H et al. 2016 Inorg. Chem. 55 7550 |
[10] | Shi X, Liu B, Yao Z, and Liu B 2020 Chin. Phys. Lett. 37 047101 |
[11] | Ma S, Peng F, Zhu S, Li S et al. 2018 J. Phys. Chem. C 122 22660 |
[12] | Wang X, Li J, Zhu H, Chen L et al. 2014 J. Chem. Phys. 141 044717 |
[13] | Zhang M, Yan H, Wei Q, Wang H et al. 2013 Europhys. Lett. 101 26004 |
[14] | Steele B A, Stavrou E, Crowhurst J C, Zaug J M et al. 2017 Chem. Mater. 29 735 |
[15] | Peng F, Wang Y, Wang H, Zhang Y et al. 2015 Phys. Rev. B 92 094104 |
[16] | Yin K, Wang Y, Liu H, Peng F et al. 2015 J. Mater. Chem. A 3 4188 |
[17] | Li Y, Feng X, Liu H et al. 2018 Nat. Commun. 9 722 |
[18] | Steele B A and Oleynik I I 2017 J. Phys. Chem. A 121 1808 |
[19] | Raza Z, Pickard C, Pinilla C, and Saitta A 2013 Phys. Rev. Lett. 111 235501 |
[20] | Ashcroft N W 2004 Phys. Rev. Lett. 92 187002 |
[21] | Prasad D L V K, Ashcroft N W, and Hoffmann R 2013 J. Phys. Chem. C 117 20838 |
[22] | Xia K, Zheng X, Yuan J, Liu C et al. 2019 J. Phys. Chem. C 123 10205 |
[23] | Allred A L J 1961 J. Inorg. Nucl. Chem. 17 215 |
[24] | Wang Y, Lv J, Zhu L, and Ma Y 2010 Phys. Rev. B 82 094116 |
[25] | Wang Y, Lv J, Zhu L, and Ma Y 2012 Comput. Phys. Commun. 183 2063 |
[26] | Gao B, Gao P, Lu S, Lv J, Wang Y, and Ma Y 2019 Sci. Bull. 64 301 |
[27] | Lv J, Wang Y, Zhu L, and Ma Y 2011 Phys. Rev. Lett. 106 015503 |
[28] | Zhu L, Wang H, Wang Y, Lv J et al. 2011 Phys. Rev. Lett. 106 145501 |
[29] | Peng F, Miao M, Wang H, Li Q, and Ma Y 2012 J. Am. Chem. Soc. 134 18599 |
[30] | Peng F, Sun Y, Pickard C J, Needs R J et al. 2017 Phys. Rev. Lett. 119 107001 |
[31] | Peng F, Song X, Liu C, Li Q et al. 2020 Nat. Commun. 11 5227 |
[32] | Lu C and Chen C 2020 Phys. Rev. Mater. 4 043402 |
[33] | Lu C and Chen C 2020 Phys. Rev. Mater. 4 044002 |
[34] | Sun W, Kuang X, Keen H D J, Lu C et al. 2020 Phys. Rev. B 102 144524 |
[35] | Chen B, Conway L J, Sun W, Kuang X et al. 2021 Phys. Rev. B 103 035131 |
[36] | Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 |
[37] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[38] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[39] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[40] | Togo A, Oba F, and Tanaka I 2008 Phys. Rev. B 78 134106 |
[41] | Kempter C P, Krikorian N H, and McGuire J C 1957 Chem. Phys. 61 1237 |
[42] | Bader R F W 1990 Atoms in Molecules: A Quantum Theory (Oxford: Clarendon) |
[43] | Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 |
[44] | Jia Y, Zhao J, Zhang S, Yu S et al. 2019 Chin. Phys. Lett. 36 087401 |
[45] | Wu Z, Zhao E, Xiang H, Hao X et al. 2007 Phys. Rev. B 76 054115 |
[46] | Evans W J, Lipp M J, Yoo C S, Cynn H et al. 2006 Chem. Mater. 18 2520 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|