Chin. Phys. Lett.  2021, Vol. 38 Issue (6): 064201    DOI: 10.1088/0256-307X/38/6/064201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Broadband Sheet Parametric Oscillator for $\chi^{(2)}$ Optical Frequency Comb Generation via Cavity Phase Matching
Xin Ni1, Kunpeng Jia1, Xiaohan Wang1, Huaying Liu1, Jian Guo1, Shu-Wei Huang2, Baicheng Yao3, Nicolò Sernicola1,4, Zhenlin Wang1, Xinjie Lv1*, Gang Zhao1*, Zhenda Xie1*, and Shi-Ning Zhu1
1National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, School of Physics, and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
2Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO 80301, USA
3Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu 611731, China
4Institute for Optics, Information and Photonics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schloßplatz 4, Erlangen 91054, Germany
Cite this article:   
Xin Ni, Kunpeng Jia, Xiaohan Wang et al  2021 Chin. Phys. Lett. 38 064201
Download: PDF(1725KB)   PDF(mobile)(2879KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a broadband optical parametric oscillation, using a sheet cavity, via cavity phase-matching. A 21.2 THz broad comb-like spectrum is achieved, with a uniform line spacing of 133.0 GHz, despite a relatively large dispersion of 275.4 fs$^{2}$/mm around 1064 nm. With 22.6% high slope efficiency, and 14.9 kW peak power handling, this sheet optical parametric oscillator can be further developed for $\chi^{(2)}$ comb.
Received: 03 February 2021      Published: 25 May 2021
PACS:  42.25.Kb (Coherence)  
  42.55.-f (Lasers)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0705000 and 2017YFA0303700), the Key R&D Program of Guangdong Province (Grant No. 2018B030329001), the Leading-Edge Technology Program of Jiangsu Natural Science Foundation (Grant No. BK20192001), and the National Natural Science Foundation of China (Grant Nos. 51890861, 11690031, 11621091, and 11674169).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/6/064201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I6/064201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Ni
Kunpeng Jia
Xiaohan Wang
Huaying Liu
Jian Guo
Shu-Wei Huang
Baicheng Yao
Nicolò Sernicola
Zhenlin Wang
Xinjie Lv
Gang Zhao
Zhenda Xie
and Shi-Ning Zhu
[1] Cundiff S T and Ye J 2003 Rev. Mod. Phys. 75 325
[2] Udem T, Holzwarth R, and Hänsch T W 2002 Nature 416 233
[3] Coddington I, Swann W C, Nenadovic L et al. 2009 Nat. Photon. 3 351
[4] Hillerkuss D, Schmogrow R, Schellinger T et al. 2011 Nat. Photon. 5 364
[5] Pfeifle J, Brasch V, Lauermann M et al. 2014 Nat. Photon. 8 375
[6] Li C H, Benedick A J, Fendel P et al. 2008 Nature 452 610
[7] Wilken T, Curto G L, Probst R A et al. 2012 Nature 485 611
[8] Diddams S A, Hollberg L, and Mbele V 2007 Nature 445 627
[9] Mandon J, Guelachvili G, and Picque N 2009 Nat. Photon. 3 99
[10] Ideguchi T, Holzner S, Bernhardt B et al. 2013 Nature 502 355
[11] Marian A, Stowe M C, Lawall J R et al. 2004 Science 306 2063
[12] Del'Haye P, Schliesser A, Arcizet O et al. 2007 Nature 450 1214
[13] Kippenberg T J, Holzwarth R, and Diddams S A 2011 Science 332 555
[14] Huang S W, Yang J, Yu M et al. 2016 Sci. Adv. 2 e1501489
[15] Kim S, Han K, Wang C et al. 2017 Nat. Commun. 8 372
[16] Dutt A, Joshi C, Ji X, Cardenas J, Okawachi Y, Luke K, Gaeta A L, and Lipson M 2018 Sci. Adv. 4 e1701858
[17] Spencer D T, Lee S H, Oh D Y et al. 2018 Nature 557 81
[18] Matsko A B, Savchenkov A A, Strekalov D et al. 2005 Phys. Rev. A 71 033804
[19] Beckmann T, Linnenbank H, Steigerwald H, Sturman B, Haertle D, Buse K, and Breunig I 2011 Phys. Rev. Lett. 106 143903
[20] Fürst J U, Strekalov D V, Elser D et al. 2010 Phys. Rev. Lett. 105 263904
[21] Ricciardi I, Mosca S, Parisi M et al. 2015 Phys. Rev. A 91 063839
[22] Mosca S, Ricciardi I, Parisi M et al. 2016 Nanophotonics 5 316
[23] Hansson T, Leo F, Erkintalo M et al. 2017 Phys. Rev. A 95 013805
[24] Ikuta R, Asano M, Tani R et al. 2018 Opt. Express 26 15551
[25] Xue X, Leo F, Xuan Y et al. 2017 Light: Sci. & Appl. 6 e16253
[26] Ru Q, Loparo Z E, Zhang X et al. 2017 Opt. Lett. 42 4756
[27] Mosca S, Parisi M, Ricciardi I et al. 2018 Phys. Rev. Lett. 121 093903
[28] Armstrong J A, Bloembergen N, Ducuing J, and Pershan P S 1962 Phys. Rev. 127 1918
[29] Rosencher E, Vinter B, and Berger V 1995 J. Appl. Phys. 78 6042
[30] Berger V, Marcadet X, and Nagle J 1998 Pure Appl. Opt. 7 319
[31] Haïdar R, Forget N, and Rosencher E 2003 IEEE J. Quantum Electron. 39 569
[32] Clément Q, Melkonian J M, Raybaut M, Dherbecourt J B, Godard A, Boulanger B, and Lefebvre M 2015 J. Opt. Soc. Am. B 32 52
[33] Raybaut M, Dherbecourt J B, Melkonian J M, Godard A, Lefebvre M, and Rosencher E 2013 Proc. SPIE 8631 86311S
[34] Xie Z D, Lv X J, Liu Y H et al. 2011 Phys. Rev. Lett. 106 083901
[35] Ciattoni A, Marini A, Rizza C, and Conti C 2017 Light: Sci. & Appl. 7 5
[36] Zelmon D E, Small D L, and Jundt D 1997 J. Opt. Soc. Am. B 14 3319
[37] Ershova A L A G I, Kitaeva G K, Kulik S P, Naumova I I, and Tarasenko V V 1991 Sov. J. Quantum Electron. 21 225
[38] Pomarico E, Sanguinetti B, Gisin N, Thew R, Zbinden H, Schreiber G, Thomas A, and Sohler W 2009 New J. Phys. 11 113042
[39] Luo K H, Herrmann H, Krapick S, Brecht B, Ricken R, Quiring V, Suche H, Sohler W, and Silberhorn C 2015 New J. Phys. 17 073039
[40] Pomarico E, Sanguinetti B, Osorio C I, Herrmann H, and Thew R T 2012 New J. Phys. 14 033008
Viewed
Full text


Abstract