Chin. Phys. Lett.  2021, Vol. 38 Issue (4): 040303    DOI: 10.1088/0256-307X/38/4/040303
GENERAL |
Bidirectional Information Flow Quantum State Tomography
Huikang Huang1, Haozhen Situ1*, and Shenggen Zheng2*
1College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
2Circuits and Systems Research Center, Peng Cheng Laboratory, Shenzhen 518055, China
Cite this article:   
Huikang Huang, Haozhen Situ, and Shenggen Zheng 2021 Chin. Phys. Lett. 38 040303
Download: PDF(1041KB)   PDF(mobile)(1035KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The exact reconstruction of many-body quantum systems is one of the major challenges in modern physics, because it is impractical to overcome the exponential complexity problem brought by high-dimensional quantum many-body systems. Recently, machine learning techniques are well used to promote quantum information research and quantum state tomography has also been developed by neural network generative models. We propose a quantum state tomography method, which is based on a bidirectional gated recurrent unit neural network, to learn and reconstruct both easy quantum states and hard quantum states in this study. We are able to use fewer measurement samples in our method to reconstruct these quantum states and to obtain high fidelity.
Received: 25 December 2020      Published: 06 April 2021
PACS:  03.65.Wj (State reconstruction, quantum tomography)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011204), and the National Natural Science Foundation of China (Grant No. 61602532).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/4/040303       OR      https://cpl.iphy.ac.cn/Y2021/V38/I4/040303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Huikang Huang
Haozhen Situ
and Shenggen Zheng
[1] Häffner H, Hänsel W, Roos C F, Benhelm J, Chek-al K D, Chwalla M, Körber T, Rapol U D, Riebe M, Schmidt P O, Becher C, Gühne O, Dür W and Blatt R 2005 Nature 438 643
[2] Gross D, Liu Y K, Flammia S T, Becker S and Eisert J 2010 Phys. Rev. Lett. 105 150401
[3] Yin Q, Xiang G Y, Li C F and Guo G C 2018 Chin. Phys. Lett. 35 070302
[4] Tóth G, Wieczorek W, Gross D, Krischek R, Schwemmer C and Weinfurter H 2010 Phys. Rev. Lett. 105 250403
[5] Moroder T, Hyllus P, Tóth G, Schwemmer C, Niggebaum A, Gaile S, Gühne O and Weinfurter H 2012 New J. Phys. 14 105001
[6] Baumgratz T, Gross D, Cramer M and Plenio M B 2013 Phys. Rev. Lett. 111 020401
[7] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195
[8] Situ H, He Z, Wang Y, Li L and Zheng S 2020 Inf. Sci. 538 193
[9] He Z, Li L, Zheng S, Li Y and Situ H 2021 New J. Phys. 23 033002
[10] Carleo G and Troyer M 2017 Science 355 602
[11] Hartmann M J and Carleo G 2019 Phys. Rev. Lett. 122 250502
[12] Deng D L, Li X and Das S S 2017 Phys. Rev. X 7 021021
[13] Cai Z and Liu J 2018 Phys. Rev. B 97 035116
[14] Fournier R, Wang L, Yazyev O V and Wu Q 2020 Phys. Rev. Lett. 124 056401
[15] Yao T S, Tang C Y, Yang M, Zhu K J, Yan D Y, Yi C J, Feng Z L, Lei H C, Li C H, Wang L, Wang L, Shi Y G, Sun Y J and Ding H 2019 Chin. Phys. Lett. 36 068101
[16] Torlai G, Mazzola G, Carrasquilla J, Troyer M, Melko R and Carleo G 2018 Nat. Phys. 14 447
[17] Carrasquilla J, Torlai G, Melko R G and Aolita L 2019 Nat. Mach. Intell. 1 200
[18] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L and Polosukhin I 2017 arXiv:1706.03762v5 [cs.CL]
[19] Cha P, Ginsparg P, Wu F, Carrasquilla J, McMahon P L and Kim E A 2020 arXiv:2006.12469v1 [quant-ph]
[20] Ahmed S, Sanchez M C, Nori F and Frisk K A 2020 arXiv:2008.03240v1 [quant-ph]
[21] Luchnikov I A, Ryzhov A, Stas P J, Filippov S N and Ouerdane H 2019 Entropy 21 1091
[22] Rocchetto A, Grant E, Strelchuk S, Carleo G and Severini S 2018 npj Quantum Inf. 4 28
[23]Sutskever I, Vinyals O and Le Q V 2014 Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS'14) (Cambridge, MA: MIT Press) vol 2 p 3104
[24] Wu Y, Schuster M, Chen Z, Le Q, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, Klingner J, Shah A, Johnson M, Liu X, Kaiser U, Gouws S, Kato Y, Kudo T, Kazawa H and Dean J 2016 arXiv:1609.08144v2 [cs.CL]
[25] Chiu C, Sainath T N, Wu Y, Prabhavalkar R, Nguyen P, Chen Z, Kannan A, Weiss R J, Rao K, Gonina E, Jaitly N, Li B, Chorowski J and Bacchiani M 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (15–20 April 2018, Calgary, AB, Canada) p 4774
[26] Schuster M and Paliwal K K 1997 IEEE Trans. Signal Process. 45 2673
[27] Cho K, Van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H and Bengio Y 2014 arXiv:1406.1078v3 [cs.CL]
[28] Hochreiter S and Schmidhuber J 1997 Neural Comput. 9 1735
[29] Kingma D and Ba J 2014 arXiv:1412.6980v9 [cs.LG]
Viewed
Full text


Abstract