CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Exotic Dielectric Behaviors Induced by Pseudo-Spin Texture in Magnetic Twisted Bilayer |
Yu-Hao Shen1, Wen-Yi Tong1, He Hu1, Jun-Ding Zheng1, and Chun-Gang Duan1,2* |
1State Key Laboratory of Precision Spectroscopy and Key Laboratory of Polar Materials and Devices of Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
|
|
Cite this article: |
Yu-Hao Shen, Wen-Yi Tong, He Hu et al 2021 Chin. Phys. Lett. 38 037501 |
|
|
Abstract Twisted van der Waals bilayers provide an ideal platform to study the electron correlation in solids. Of particular interest is the 30$^{\circ}$ twisted bilayer honeycomb lattice system, which possesses an incommensurate moiré pattern, and uncommon electronic behaviors may appear due to the absence of phase coherence. Such a system is extremely sensitive to further twist and many intriguing phenomena will occur. Based on first-principles calculations we show that, for further twist near 30$^{\circ}$, there could induce dramatically different dielectric behaviors of electron between left and right-twisted cases. Specifically, it is found that the left and right twists show suppressed and amplified dielectric response under vertical electric field, respectively. Further analysis demonstrate that such an exotic dielectric property can be attributed to the stacking dependent charge redistribution due to twist, which forms twist-dependent pseudospin textures. We will show that such pseudospin textures are robust under small electric field. As a result, for the right-twisted case, there is almost no electric dipole formation exceeding the monolayer thickness when the electric field is applied. Whereas for the left case, the system could even demonstrate negative susceptibility, i.e., the induced polarization is opposite to the applied field, which is very rare in the nature. Such findings not only enrich our understanding on moiré systems but also open an appealing route toward functional 2D materials design for electronic, optical and even energy storage devices.
|
|
Received: 02 February 2021
Published: 23 February 2021
|
|
PACS: |
73.21.Cd
|
(Superlattices)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
77.22.-d
|
(Dielectric properties of solids and liquids)
|
|
77.90.+k
|
(Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303403), the Shanghai Science and Technology Innovation Action Plan (Grant No. 19JC1416700), the National Natural Science Foundation of China (Grant No. 11774092), and the ECNU Multifunctional Platform for Innovation. |
|
|
[1] | Berger C et al. 2006 Science 312 1191 |
[2] | Ni Z H, Wang Y Y, Yu T, You Y M and Shen Z X 2008 Phys. Rev. B 77 235403 |
[3] | Yan Z, Peng Z W, Sun Z Z, Yao J, Zhu Y, Liu Z, Ajayan P M and Tour J M 2011 ACS Nano 5 8187 |
[4] | Xie L M, Wang H L, Jin C H, Wang X R, Jiao L Y, Suenaga K and Dai H J 2011 J. Am. Chem. Soc. 133 10394 |
[5] | Zhao R Q, Zhang Y F, Gao T, Gao Y B, Liu N, Fu L and Liu Z F 2011 Nano Res. 4 712 |
[6] | Carr S, Massatt D, Fang S, Cazeaux P, Luskin M and Kaxiras E 2017 Phys. Rev. B 95 075420 |
[7] | Kang J, Li J, Li S S, Xia J B and Wang L W 2013 Nano Lett. 13 5485 |
[8] | Li G H, Luican A, Santos J M B L D, Neto A H C, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109 |
[9] | Ugeda M M et al. 2014 Nat. Mater. 13 1091 |
[10] | Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 |
[11] | Yankowitz M, Xue J M, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382 |
[12] | Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P and Leroy B J 2011 Nat. Mater. 10 282 |
[13] | Luican A, Li G H, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K and Andrei E Y 2011 Phys. Rev. Lett. 106 126802 |
[14] | TramblydeLaissardiere G, Mayou D and Magaud L 2012 Phys. Rev. B 86 125413 |
[15] | Cao Y et al. 2018 Nature 556 80 |
[16] | Padhi B, Setty C and Phillips P W 2018 Nano Lett. 18 6175 |
[17] | Wolf T M R, Lado J L, Blatter G and Zilberberg O 2019 Phys. Rev. Lett. 123 096802 |
[18] | Kim K et al. 2017 Proc. Natl. Acad. Sci. USA 114 3364 |
[19] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 |
[20] | Woods C R et al. 2014 Nat. Phys. 10 451 |
[21] | Lebedev A V, Lebedeva I V, Popov A M and Knizhnik A A 2017 Phys. Rev. B 96 085432 |
[22] | Yao W et al. 2018 Proc. Natl. Acad. Sci. USA 115 6928 |
[23] | Lebedeva I V, Lebedev A V, Popov A M and Knizhnik A A 2016 Phys. Rev. B 93 235414 |
[24] | Ahn S J et al. 2018 Science 361 782 |
[25] | Liu K H et al. 2014 Nat. Commun. 5 4966 |
[26] | Lin M L et al. 2018 ACS Nano 12 8770 |
[27] | Wu F C, Lovorn T and MacDonald A H 2017 Phys. Rev. Lett. 118 147401 |
[28] | Cao B X and Li T S 2015 J. Phys. Chem. C 119 1247 |
[29] | Yu H Y, Liu G B, Tang J J, Xu X D and Yao W 2017 Sci. Adv. 3 e1701696 |
[30] | Wu F C, Lovorn T and MacDonald A H 2018 Phys. Rev. B 97 035306 |
[31] | Naik M H and Jain M 2018 Phys. Rev. Lett. 121 266401 |
[32] | Wang Y, Wang Z, Yao W, Liu G B and Yu H Y 2017 Phys. Rev. B 95 115429 |
[33] | Moon P and Koshino M 2013 Phys. Rev. B 87 205404 |
[34] | Sivadas N, Okamoto S, Xu X D, Fennie C J and Xiao D 2018 Nano Lett. 18 7658 |
[35] | Jiang P, Wang C, Chen D, Zhong Z, Yuan Z, Lu Z Y and Ji W 2018 arXiv:1806.09274 |
[36] | Huang B et al. 2018 Nat. Nanotechnol. 13 544 |
[37] | Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mater. 1 16055 |
[38] | Tong W Y, Gong S J, Wan X G and Duan C G 2016 Nat. Commun. 7 13612 |
[39] | Shen X W, Tong W Y, Gong S J and Duan C G 2018 2D Mater. 5 011001 |
[40] | Esters M, Hennig R G and Johnson D C 2017 Phys. Rev. B 96 235147 |
[41] | Tong W Y and Duan C G 2017 npj Quantum Mater. 2 47 |
[42] | Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406 |
[43] | Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802 |
[44] | Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 |
[45] | Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 |
[46] | Jones A M, Yu H Y, Ross J S, Klement P, Ghimire N J, Yan J Q, Mandrus D G, Yao W and Xu X D 2014 Nat. Phys. 10 130 |
[47] | Gong S J, Gong C, Sun Y Y, Tong W Y, Duan C G, Chu J H and Zhang X 2018 Proc. Natl. Acad. Sci. USA 115 8511 |
[48] | King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651 |
[49] | Duan C G, Velev J P, Sabirianov R F, Zhu Z Q, Chu J H, Jaswal S S and Tsymbal E Y 2008 Phys. Rev. Lett. 101 137201 |
[50] | Shen Y H, Song Y X, Tong W Y, Shen X W, Gong S J and Duan C G 2018 Adv. Theory Simul. 1 1800048 |
[51] | Zhang X W, Liu Q H, Luo J W, Freeman A J and Zunger A 2014 Nat. Phys. 10 387 |
[52] | Salahuddin S and Dattat S 2008 Nano Lett. 8 405 |
[53] | Anderson P W 1972 Science 177 393 |
[54] | Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 |
[55] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[56] | Grimme S 2006 J. Comput. Chem. 27 1787 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|