CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure |
Jiayu Ma1,2†, Junlin Kuang1†, Wenwen Cui1*, Ju Chen1, Kun Gao1, Jian Hao1*, Jingming Shi1, and Yinwei Li1 |
1Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China 2CW Chu College, Jiangsu Normal University, Xuzhou 221116, China
|
|
Cite this article: |
Jiayu Ma, Junlin Kuang, Wenwen Cui et al 2021 Chin. Phys. Lett. 38 027401 |
|
|
Abstract The recent observation of high critical temperature $T_{\rm c}$ in lanthanum and Yttrium hydrides confirms the key role of hydrogen cage (H-cage) in determining high superconductivity. Here, we present a new class of metastable H$_{12}$ clathrate structures based on the icosahedral $cI24$-Na that can be stabilized by incorporation of metal elements. Analysis shows that the charge transfer from metal atoms to H atoms contributes to forming the H$_{12}$ clathrate. Nine dynamically stable structures are identified to exhibit superconductivity, and a maximum $T_{\rm c}$ of 28 K is found in voids-doped Mo$_{6}$H$_{24}$. Calculations reveal that the low $T_{\rm c}$ is attributed to the weak interaction between H atoms in each cage due to the long H–H distance. The current results provide a possible route to design H-cage containing superconductors.
|
|
Received: 08 October 2020
Published: 27 January 2021
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 12074154, 11722433, 11804128, 11804129, and 11904142), and the Qing Lan Project of Jiangsu Province. |
|
|
[1] | Ashcroft N W 2004 Phys. Rev. Lett. 92 187002 |
[2] | Cui W and Li Y 2019 Chin. Phys. B 28 107104 |
[3] | Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005 |
[4] | Drozdov A, Eremets M, Troyan I, Ksenofontov V and Shylin S 2015 Nature 525 73 |
[5] | Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528 |
[6] | Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 27001 |
[7] | Wang H, Tse J, Tanaka K, Iitaka T and ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463 |
[8] | Li Y, Hao J, Liu H, Tse J, Wang Y and Ma Y 2015 Sci. Rep. 5 9948 |
[9] | Troyan I, Semenok D, Kvashnin A, Ivanova A, Prakapenka V, Greenberg E, Gavriliuk A, Lyubutin I, Struzhkin V and Oganov A 2019 arXiv:1908.01534 [cond-mat.supr-con] |
[10] | Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001 |
[11] | Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990 |
[12] | Papaconstantopoulos D A, Mehl M J and Chang P H 2020 Phys. Rev. B 101 060506 |
[13] | Durajski A P, Szczesniak R, Li Y, Chongze W J H C, Wang C and Cho J H 2020 Phys. Rev. B 101 214501 |
[14] | Elatresh S F, Timusk T and Nicol E J 2020 Phys. Rev. B 102 024501 |
[15] | Kostrzewa M, Szczȩśniak K M, Durajski A P and Szczȩśniak R 2020 Sci. Rep. 10 1 |
[16] | Errea I, Belli F, Monacelli L, Sanna A, Koretsune T, Tadano T, Bianco R, Calandra M, Arita R, Mauri F and Flores-Livas J A 2020 Nature 578 66 |
[17] | Feng X L, Zhang J R, Gao G Y, Liu H Y and Wang H 2015 RSC Adv. 5 59292 |
[18] | Salke N P, Davari E M M, Zhang Y, Kruglov I A, Zhou J, Wang Y, Greenberg E, Prakapenka V B, Liu J, Oganov A R and Lin J F 2019 Nat. Commun. 10 1 |
[19] | Peña-Alvarez M, Binns J, Hermann A, Kelsall L C, Dalladay-Simpson P, Gregoryanz E and Howie R T 2019 Phys. Rev. B 100 184109 |
[20] | Zhou D, Semenok D V, Duan D, Xie H, Chen W, Huang X, Li X, Liu B, Oganov A R and Cui T 2020 Sci. Adv. 6 eaax6849 |
[21] | Kvashnin A G, Semenok D V, Kruglov I A, Wrona I A and Oganov A R 2018 ACS Appl. Mater. & Interfaces 10 43809 |
[22] | Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A and Oganov A R 2020 Mater. Today 33 36 |
[23] | Semenok D V, Kvashnin A G, Kruglov I A and Oganov A R 2018 J. Phys. Chem. Lett. 9 1920 |
[24] | Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 97001 |
[25] | Li Y, Wang Y, Pickard C J, Needs R J, Wang Y and Ma Y 2015 Phys. Rev. Lett. 114 125501 |
[26] | Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 |
[27] | Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 |
[28] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[29] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[30] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[31] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|