CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
First-Principles Study of Intrinsic Point Defects of Monolayer GeS |
Chen Qiu1,2,, Ruyue Cao2,3*, Cai-Xin Zhang2, Chen Zhang2,3, Dan Guo2,3, Tao Shen2,3, Zhu-You Liu2,3, Yu-Ying Hu2,3, Fei Wang1*, and Hui-Xiong Deng2,3* |
1International Laboratory for Quantum Functional Materials of Henan, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China 2State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
|
|
Cite this article: |
Chen Qiu, Ruyue Cao, Cai-Xin Zhang et al 2021 Chin. Phys. Lett. 38 026103 |
|
|
Abstract The properties of six kinds of intrinsic point defects in monolayer GeS are systematically investigated using the “transfer to real state” model, based on density functional theory. We find that Ge vacancy is the dominant intrinsic acceptor defect, due to its shallow acceptor transition energy level and lowest formation energy, which is primarily responsible for the intrinsic p-type conductivity of monolayer GeS, and effectively explains the native p-type conductivity of GeS observed in experiment. The shallow acceptor transition level derives from the local structural distortion induced by Coulomb repulsion between the charged vacancy center and its surrounding anions. Furthermore, with respect to growth conditions, Ge vacancies will be compensated by fewer n-type intrinsic defects under Ge-poor growth conditions. Our results have established the physical origin of the intrinsic p-type conductivity in monolayer GeS, as well as expanding the understanding of defect properties in low-dimensional semiconductor materials.
|
|
Received: 13 November 2020
Published: 27 January 2021
|
|
PACS: |
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
61.72.Bb
|
(Theories and models of crystal defects)
|
|
71.55.-i
|
(Impurity and defect levels)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 61922077, 11804333, 11704114, 11874347, 61121491, 61427901, 11634003, and U1930402), the National Key Research and Development Program of China (Grant Nos. 2016YFB0700700 and 2018YFB2200100), the Science Challenge Project (Grant No. TZ2016003), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017154). |
|
|
[1] | Late D J, Liu B, Matte H S, Dravid V P and Rao C N 2012 ACS Nano 6 5635 |
[2] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 |
[3] | Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D and Ye P D 2014 ACS Nano 8 4033 |
[4] | Osada M and Sasaki T 2012 Adv. Mater. 24 210 |
[5] | Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 |
[6] | Sutter E and Sutter P 2018 ACS Appl. Nano Mater. 1 1042 |
[7] | Sutter E, Zhang B, Sun M and Sutter P 2019 ACS Nano 13 9352 |
[8] | Liu Z, Sun Y, Cao H, Xie D, Li W, Wang J and Cheetham A K 2020 Nat. Commun. 11 3917 |
[9] | Wang S G, Tan C J, Yang Q, Xu Y X, Li S L and Chen X P 2017 IEEE Electron Device Lett. 38 1590 |
[10] | Tan D, Lim H E, Wang F, Mohamed N B, Mouri S, Zhang W, Miyauchi Y, Ohfuchi M and Matsuda K 2017 Nano Res. 10 546 |
[11] | Tan D, Zhang W, Wang X, Koirala S, Miyauchi Y and Matsuda K 2017 Nanoscale 9 12425 |
[12] | Ho C H and Li J X 2017 Adv. Opt. Mater. 5 1600814 |
[13] | Le P T T, Nguyen C V, Thuan D V, Vu T V, Ilyasov V V and Poklonski N A 2019 J. Electron. Mater. 48 2902 |
[14] | Li F, Liu X, Wang Y and Li Y 2016 J. Mater. Chem. C 4 2155 |
[15] | Ding G, Gao G and Yao K 2015 Sci. Rep. 5 9567 |
[16] | Shafique A and Shin Y H 2017 Sci. Rep. 7 506 |
[17] | Wei S H 2004 Comput. Mater. Sci. 30 337 |
[18] | Deng H, Cao R and Wei S H 2021 Sci. Chin. Phys. Mech. & Astron. 64 237301 |
[19] | Reddy K T R, Reddy N K and Miles R W 2006 Sol. Energy Mater. Sol. Cells 90 3041 |
[20] | Wei T R, Tan G, Zhang X, Wu C F, Li J F, Dravid V P, Snyder G J and Kanatzidis M G 2016 J. Am. Chem. Soc. 138 8875 |
[21] | Huang Y, Wang C, Chen X, Zhou D, Du J, Wang S and Ning L 2017 RSC Adv. 7 27612 |
[22] | Vidal J, Lany S, d'Avezac M, Zunger A, Zakutayev A, Francis J and Tate J 2012 Appl. Phys. Lett. 100 032104 |
[23] | Nakamura M, Nakamura H, Matsushita Y, Shimamura K and Ohashi N 2020 J. Cryst. Growth 547 125813 |
[24] | Ulaganathan R K, Lu Y Y, Kuo C J, Tamalampudi S R, Sankar R, Boopathi K M, Anand A, Yadav K, Mathew R J, Liu C R, Chou F C and Chen Y T 2016 Nanoscale 8 2284 |
[25] | Wang D, Han D, Li X B, Xie S Y, Chen N K, Tian W Q, West D, Sun H B and Zhang S B 2015 Phys. Rev. Lett. 114 196801 |
[26] | Xiao J, Yang K K, Guo D, Shen T, Deng H X, Li S S, Luo J W and Wei S H 2020 Phys. Rev. B 101 165306 |
[27] | Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N et al. 2017 J. Phys.: Condens. Matter 29 465901 |
[28] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I et al. 2009 J. Phys.: Condens. Matter 21 395502 |
[29] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[30] | Li F, Qu Y and Zhao M 2016 J. Mater. Chem. A 4 8905 |
[31] | Wei S H and Zhang S B 2002 Phys. Rev. B 66 155211 |
[32] | Guo G and Bi G 2018 Micro & Nano Lett. 13 600 |
[33] | Gomes L C, Trevisanutto P E, Carvalho A, Rodin A S and Neto A H C 2016 Phys. Rev. B 94 155428 |
[34] | Cai X, Yang J, Zhang P and Wei S H 2019 Phys. Rev. Appl. 11 034019 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|