Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 113201    DOI: 10.1088/0256-307X/37/11/113201
ATOMIC AND MOLECULAR PHYSICS |
Universality of the Dynamic Characteristic Relationship of Electron Correlation in the Two-Photon Double Ionization Process of a Helium-Like System
Fei Li1,6, Yu-Jun Yang2, Jing Chen3,4, Xiao-Jun Liu5, Zhi-Yi Wei1,6*, and Bing-Bing Wang1,6*
1Laboratory of Optical Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
3Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
4HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China
5State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
6University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Fei Li, Yu-Jun Yang, Jing Chen et al  2020 Chin. Phys. Lett. 37 113201
Download: PDF(2191KB)   PDF(mobile)(2189KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Universality of the dynamic characteristic relationship between the characteristic time $t_{\rm c}$ and the two-electron Coulomb interaction energy $\overline{V}_{12}$ of the ground state in the two-photon double ionization process is investigated via changing the parameters of the two-electron atomic system and the corresponding laser conditions. The numerical results show that the product $t_{\rm c}\overline{V}_{12}$ keeps constant around 4.1 in the cases of changing the nucleus charge, the electron charge, the electron mass, and changing simultaneously the nucleus charge and the electron charge. These results demonstrate that the dynamic characteristic relationship in the two-photon double ionization process is universal. This work sheds more light on the dynamic characteristic relationship in ultrafast processes and may find its application in measurements of attosecond pulses.
Received: 27 August 2020      Published: 08 November 2020
PACS:  32.80.-t (Photoionization and excitation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 91850209, 11774129, and 11774411), and the National Key Research and Development Program of China (Grant Nos. 2019YFA0307700 and 2016YFA0401100).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/113201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I11/113201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fei Li
Yu-Jun Yang
Jing Chen
Xiao-Jun Liu
Zhi-Yi Wei
and Bing-Bing Wang
[1] Peng L Y, Jiang W C, Geng J W, Xiong W H and Gong Q H 2015 Phys. Rep. 575 1
[2] Foumouo E, Antoine Ph, Bachau H and Piraux B 2008 New J. Phys. 10 025017
[3] Feist J, Pazourek R, Nagele S, Persson E, Schneider B I, Collins L A and Burgdörfer J 2009 J. Phys. B: At. Mol. Opt. Phys. 42 134014
[4] Pazourek R, Feist J, Nagele S and Burgdörfer J 2012 Phys. Rev. Lett. 108 163001
[5] Jiang W C, Nagele S and Burgdörfer J 2017 Phys. Rev. A 96 053422
[6] Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdörfer, Kienberger J R and Schultze M 2017 Nat. Phys. 13 280
[7] Hu S X 2018 Phys. Rev. A 97 013414
[8] Martin L, Bello R Y, Hogle C W, Palacios A, Tong X M, Sanz-Vicario J L, Jahnke T, Schöffler M, Dörner R, Weber Th, Martín F, Kapteyn H C, Murnane M M and Ranitovic P 2018 Phys. Rev. A 97 062508
[9] Xiao Z L, Quan W, Xu S P, Yu S G, Lai X Y, Chen J and Liu X J 2020 Chin. Phys. Lett. 37 043201
[10] Zhang B, Zhao J and Zhao Z X 2018 Chin. Phys. Lett. 35 043201
[11] Ye D, Li M, Fu L, Liu J, Gong Q, Liu Y and Ullrich J 2015 Phys. Rev. Lett. 115 123001
[12] Li F, Jin F C, Yang Y J, Chen J, Yan Z C, Liu X J and Wang B B 2019 J. Phys. B: At. Mol. Opt. Phys. 52 195601
[13]Levin F S and Micha D A 1994 Long-Range Casimir Forces: Theory and Recent Experiments on Atomic Systems (New York: Springer Science & Business Media)
[14] Bachau H, Cormier E, Decleva P and Martín F 2001 Rep. Prog. Phys. 64 1815
[15] Shi T Y, Bao C G and Li B W 2001 Commun. Theor. Phys. 35 195
[16]Joachain C J, Kylstra N J and Potvliege R M 2012 Atoms in Intense Laser Fields (Cambridge: Cambridge University Press)
[17]Shampine L F and Gordon M K 1975 Computer Solution of Ordinary Differential Equations: The Initial Value Problem (San Francisco: Freeman)
[18] Peng L Y and Gong Q H 2010 Comput. Phys. Commun. 181 2098
[19] Liu A H and Thumm U 2014 Phys. Rev. A 89 063423
[20] Riso L A and Shukla P K 2008 J. Plasma Phys. 74 1
[21] Gregory C 1953 Phys. Rev. 92 1554
Related articles from Frontiers Journals
[1] Yankun Dou, Yiqi Fang, Peipei Ge, and Yunquan Liu. Controlling Magnetic and Electric Nondipole Effects with Synthesized Two Perpendicularly Propagating Laser Fields[J]. Chin. Phys. Lett., 2023, 40(3): 113201
[2] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 113201
[3] Shuai Wang, Zhiyuan Zhu, Yizhu Zhang, Tian-Min Yan, and Yuhai Jiang. Rabi Oscillations and Coherence Dynamics in Terahertz Streaking-Assisted Photoelectron Spectrum[J]. Chin. Phys. Lett., 2021, 38(1): 113201
[4] Jiu Tang, Guizhong Zhang, Yufei He, Meng Li, Xin Ding, Jianquan Yao. Spider Structure of Photoelectron Momentum Distributions of Ionized Electrons from Hydrogen Atoms for Extraction of Carrier Envelope Phase of Few-Cycle Pulses[J]. Chin. Phys. Lett., 2020, 37(2): 113201
[5] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 113201
[6] Meng Li, Gui-zhong Zhang, Xin Ding, Jian-quan Yao. Carrier Envelope Phase Description for an Isolated Attosecond Pulse by Momentum Vortices[J]. Chin. Phys. Lett., 2019, 36(6): 113201
[7] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 113201
[8] Juan-Juan Cao, Ting Gong, Zhong-Hao Li, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Transition Dipole Moment Measurements of Ultracold Photoassociated $^{85}$Rb$^{133}$Cs Molecules by Depletion Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(10): 113201
[9] Zhong-Hua Ji, Zhong-Hao Li, Ting Gong, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Rotational Population Measurement of Ultracold $^{85}$Rb$^{133}$Cs Molecules in the Lowest Vibrational Ground State[J]. Chin. Phys. Lett., 2017, 34(10): 113201
[10] Yu-Zhu Liu, Jin-You Long, Lin-Hua Xu, Xiang-Yun Zhang, Bing Zhang. Probing Ultrafast Dissociation Dynamics of Chloroiodomethane in the B Band by Time-Resolved Mass Spectrometry[J]. Chin. Phys. Lett., 2017, 34(3): 113201
[11] Fu Sun, Dong Wei, Gui-Zhong Zhang, Xin Ding, Jian-Quan Yao. Dynamic Interference Photoelectron Spectra in Double Ionization: Numerical Simulation of 1D Helium[J]. Chin. Phys. Lett., 2016, 33(12): 113201
[12] XU Zhi-Chao, PAN Duo, ZHUANG Wei, CHEN Jing-Biao. Dual-Wavelength Bad Cavity Laser as Potential Active Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(09): 113201
[13] XU Zhi-Chao, PAN Duo, ZHUANG Wei, CHEN Jing-Biao. Experimental Scheme of 633 nm and 1359 nm Good-Bad Cavity Dual-Wavelength Active Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(08): 113201
[14] ZHU Chuan-Wen, TAO Zhi-Ming, CHEN Mo, LIU Zhong-Zheng, ZHANG Xiao-Gang, ZHANG Sheng-Nan, CHEN Jing-Biao. Population Distribution of Excited States in Cs Electrodeless Discharge Lamp[J]. Chin. Phys. Lett., 2015, 32(06): 113201
[15] LIAO Kai-Yu, YAN Hui, HE Jun-Yu, HUANG Wei, ZHANG Zhi-Ming, ZHU Shi-Liang. Experimental Generation of Narrow-Band Paired Photons: from Damped Rabi Oscillation to Group Delay[J]. Chin. Phys. Lett., 2014, 31(03): 113201
Viewed
Full text


Abstract