Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 107503    DOI: 10.1088/0256-307X/37/10/107503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetic Phase Diagram of Cu$_{4-x}$Zn$_x$(OH)$_6$FBr Studied by Neutron-Diffraction and $\mu$SR Techniques
Yuan Wei1,2†, Xiaoyan Ma1,2†, Zili Feng1,3, Devashibhai Adroja4,5, Adrian Hillier4, Pabitra Biswas4, Anatoliy Senyshyn6, Andreas Hoser7, Jia-Wei Mei8, Zi Yang Meng1,9,10, Huiqian Luo1,10*, Youguo Shi1,10*, and Shiliang Li1,2,10*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
4ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot Oxon OX11 0QX, United Kingdom
5Highly Correlated Matter Research Group, Physics Department, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
6Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Garching D-85747, Germany
7Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
8Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
9Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
10Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Yuan Wei, Xiaoyan Ma, Zili Feng et al  2020 Chin. Phys. Lett. 37 107503
Download: PDF(1514KB)   PDF(mobile)(1484KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We systematically investigate the magnetic properties of Cu$_{4-x}$Zn$_x$(OH)$_6$FBr using the neutron diffraction and muon spin rotation and relaxation (μSR) techniques. Neutron-diffraction measurements suggest that the long-range magnetic order and the orthorhombic nuclear structure in the $x = 0$ sample can persist up to $x = 0.23$ and 0.43, respectively. The temperature dependence of the zero-field μSR spectra provides two characteristic temperatures, $T_{A_0}$ and $T_{\lambda}$, which are associated with the initial drop close to zero time and the long-time exponential decay of the muon relaxation, respectively. Comparison between $T_{A_0}$ and $T_{\rm M}$ from previously reported magnetic-susceptibility measurements suggest that the former comes from the short-range interlayer-spin clusters that persist up to $x = 0.82$. On the other hand, the doping level where $T_{\lambda}$ becomes zero is about 0.66, which is much higher than threshold of the long-range order, i.e., $\sim$0.4. Our results suggest that the change in the nuclear structure may alter the spin dynamics of the kagome layers and a gapped quantum-spin-liquid state may exist above $x = 0.66$ with the perfect kagome planes.
Received: 23 July 2020      Published: 29 September 2020
PACS:  75.50.Mm (Magnetic liquids)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  76.75.+i (Muon spin rotation and relaxation)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302900, 2016YFA0300500, 2018YFA0704200, 2017YFA0303100, and 2016YFA0300600), the National Natural Science Foundation of China (Grant Nos. 11874401, 11674406, 11674372, 11961160699, 11774399, 12061130200, 11974392, and 11822411), the Strategic Priority Research Program(B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000, XDB07020000, XDB33000000, and XDB28000000), the Beijing Natural Science Foundation (Grant Nos. Z180008 and JQ19002), Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07C062), the Youth Innovation Promotion Association of CAS (Grant No. 2016004), and the Royal Society-Newton Advanced Fellowship (Grant No. NAF$\backslash$R1$\backslash$201248).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/107503       OR      https://cpl.iphy.ac.cn/Y2020/V37/I10/107503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuan Wei
Xiaoyan Ma
Zili Feng
Devashibhai Adroja
Adrian Hillier
Pabitra Biswas
Anatoliy Senyshyn
Andreas Hoser
Jia-Wei Mei
Zi Yang Meng
Huiqian Luo
Youguo Shi
and Shiliang Li
[1] Messio L, Bernu B and Lhuillier C 2012 Phys. Rev. Lett. 108 207204
[2] Bieri S, Messio L, Bernu B and Lhuillier C 2015 Phys. Rev. B 92 060407
[3] Iqbal Y, Jeschke H O, Reuther J, Valentí R, Mazin I I, Greiter M and Thomale R 2015 Phys. Rev. B 92 220404
[4] Gong S S, Zhu W, Yang K, Starykh O A, Sheng D N and Balents L 2016 Phys. Rev. B 94 035154
[5] Liao H J, Xie Z Y, Chen J, Liu Z Y, Xie H D, Huang R Z, Normand B and Xiang T 2017 Phys. Rev. Lett. 118 137202
[6] Mei J W, Chen J Y, He H and Wen X G 2017 Phys. Rev. B 95 235107
[7] Wang Y C, Zhang X F, Pollmann F, Cheng M and Meng Z Y 2018 Phys. Rev. Lett. 121 057202
[8] Savary L and Balents L 2017 Rep. Prog. Phys. 80 016502
[9] Zhou Y, Kanoda K and Ng T K 2017 Rev. Mod. Phys. 89 025003
[10] Norman M R 2016 Rev. Mod. Phys. 88 041002
[11] Shores M P, Nytko E A, Bartlett B M and Nocera D G 2005 J. Am. Chem. Soc. 127 13462
[12] Bert F, Nakamae S, Ladieu F, L'Hôte D, Bonville P, Duc F, Trombe J C and Mendels P 2007 Phys. Rev. B 76 132411
[13] Mendels P, Bert F, de Vries M A, Olariu A, Harrison A, Duc F, Trombe J C, Lord J S, Amato A and Baines C 2007 Phys. Rev. Lett. 98 077204
[14] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204
[15] de Vries M A, Stewart J R, Deen P P, Piatek J O, Nilsen G J, Rønnow H M and Harrison A 2009 Phys. Rev. Lett. 103 237201
[16] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[17] Han T H, Norman M R, Wen J J, Rodriguez-Rivera J A, Helton J S, Broholm C and Lee Y S 2016 Phys. Rev. B 94 060409
[18] Fu M, Imai T, Han T H and Lee Y S 2015 Science 350 655
[19] Khuntia P, Velazquez M, Barthélemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A and Mendels P 2020 Nat. Phys. 16 469
[20] Nilsen G J, de Vries M A, Stewart J R, Harrison A and Rnnow H M 2013 J. Phys.: Condens. Matter 25 106001
[21] Sun W, Huang Y X, Nokhrin S, Panb Y and Mi J X 2016 J. Mater. Chem. C 4 8772
[22] Okuma R, Yajima T, Nishio-Hamane D, Okubo T and Hiroi Z 2017 Phys. Rev. B 95 094427
[23] Feng Z, Li Z, Meng X, Yi W, Wei Y, Zhang J, Wang Y C, Jiang W, Liu Z, Li S, Liu F, Luo J, Li S, Zheng G Q, Meng Z Y, Mei J W and Shi Y 2017 Chin. Phys. Lett. 34 077502
[24] Feng Z, Yi W, Zhu K, Wei Y, Miao S, Ma J, Luo J, Li S, Meng Z Y and Shi Y 2018 Chin. Phys. Lett. 36 017502
[25] Puphal P, Zoch K M, Désor J, Bolte M and Krellner C 2018 Phys. Rev. Mater. 2 063402
[26] Wei Y, Feng Z, dela Cruz C, Yi W, Meng Z Y, Mei J W, Shi Y and Li S 2019 Phys. Rev. B 100 155129
[27] Iida K, Yoshida H K, Nakao A, Jeschke H O, Iqbal Y, Nakajima K, Ohira-Kawamura S, Munakata K, Inamura Y, Murai N, Ishikado M, Kumai R, Okada T, Oda M, Kakurai K and Matsuda M 2020 Phys. Rev. B 101 220408
[28] Han T H, Singleton J and Schlueter J A 2014 Phys. Rev. Lett. 113 227203
[29] Feng Z, Wei Y, Liu R, Yan D, Wang Y C, Luo J, Senyshyn A, dela Cruz C, Yi W, Mei J W, Meng Z Y, Shi Y and Li S 2018 Phys. Rev. B 98 155127
[30] Tustain K, Nilsen G J, Ritter C, da Silva I and Clark L 2018 Phys. Rev. Mater. 2 111405
[31] Smaha R W, He W, Jiang J M, Wen J, Jiang Y F, Sheckelton J P, Titus C J, Wang S G, Chen Y S, Teat S J, Aczel A A, Zhao Y, Xu G, Lynn J W, Jiang H C and Lee Y S 2020 npj Quantum Mater. 5 23
[32] Tustain K, WardO-'Brien B, Bert F, Han T H, Luetkens H, Lancaster T, Huddart B M, Baker P J and Clark L 2020 arXiv:2005.12615 [cond-mat.str-el]
[33] Wei Y, Feng Z, Hu D H, Lohstroh W, dela Cruz C, Yi W, Ding Z F, Zhang J, Tan C, Shu L, Wang Y C, Wu H Q, Luo J, Mei J W, Meng Z Y, Shi Y and Li S 2017 arXiv:1710.02991
[34] Han T H, Isaacs E D, Schlueter J A and Singleton J 2016 Phys. Rev. B 93 214416
[35] Zorko A, Nellutla S, van Tol J, Brunel L C, Bert F, Duc F, Trombe J C, de Vries M A, Harrison A and Mendels P 2008 Phys. Rev. Lett. 101 026405
[36] Cépas O, Fong C M, Leung P W and Lhuillier C 2008 Phys. Rev. B 78 140405
[37] Zorko A, Herak M, Gomilšek M, van Tol J, Velázquez M, Khuntia P, Bert F and Mendels P 2017 Phys. Rev. Lett. 118 017202
[38] Laurita N J, Ron A, Han J W, Scheie A, Sheckelton J P, Smaha R W, He W, Wen J J, Lee J S, Lee Y S, Norman M R and Hsieh D 2019 arXiv:1910.13606 [cond-mat.str-el]
[39] Norman M R, Laurita N J and Hsieh D 2020 Phys. Rev. Res. 2 013055
[40] Li Y, Pustogow A, Bories M, Puphal P, Krellner C, Dressel M and Valentí R 2020 Phys. Rev. B 101 161115
[41] Rodriguez-Carvajal J 1993 Physica B 192 55
[42] Arnold O, Bilheux J C, Borreguero J M, Buts A, Campbell S I, Chapon L, Doucet M, Draper N, Leal R F, Gigg M A, Lynch V E, Markvardsen A, Mikkelson D J, Mikkelson R L, Miller R, Palmen K, Parker P, Passos G, Perring T G, Peterson P F, Ren S, Reuter M A, Savici A T, Taylor J W, Taylor R J, Tolchenov R, Zhou W and Zikovsky J 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 764 156
Related articles from Frontiers Journals
[1] LI Xiao-Qiang, ZHENG Lu, WANG Xu-Fei. In Vivo Magnetic Particle Targeting by Local Gradient Field of Interstitial Seeds Magnetized in an Ex Vivo Uniform Field[J]. Chin. Phys. Lett., 2014, 31(2): 107503
[2] LI Yan-Qin LI Xue-Hui. Influence of Perpendicular Magnetic Field on Apparent Density and Microstructure of Magnetic Fluid[J]. Chin. Phys. Lett., 2012, 29(10): 107503
[3] FANG Wen-Xiao, HE Zhen-Hui, CHEN Di-Hu, ZHAO Yan-E. A Diffusion Model of Field-Induced Aggregation in Ferrofluid Film[J]. Chin. Phys. Lett., 2008, 25(9): 107503
[4] PU Sheng-Li, CHEN Xian-Feng, DI Zi-Yun, GENG Tao, XIA Yu-Xing. Electrical Properties of Nanostructured Magnetic Colloid and Influence of Magnetic Field[J]. Chin. Phys. Lett., 2007, 24(11): 107503
[5] ZHANG Jian-Hui, XU Xue-Fei, SI Ming-Su, ZHOU You-He, XUE De-Sheng. Hydrodynamic Properties of Fe3O4 Kerosene-Based Ferrofluids with Narrow Particle Size Distribution[J]. Chin. Phys. Lett., 2005, 22(11): 107503
[6] FANG Wen-Xiao, HE Zhen-Hui, XU Xue-Qing, SHEN Hui. Aligned Structures of Fe3O4 Nanoparticles in a Curable Polymer Carrier Induced by a Magnetic Field[J]. Chin. Phys. Lett., 2005, 22(9): 107503
[7] FENG Xue-Shang, LIU Yong, WEI Feng-Si, YE Zhan-Yin. Two Special Solutions of the Non-ideal Magnetohydrodynamics[J]. Chin. Phys. Lett., 2000, 17(5): 107503
Viewed
Full text


Abstract