Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 101201    DOI: 10.1088/0256-307X/37/10/101201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
$X_0(2900)$ and $X_1(2900)$: Hadronic Molecules or Compact Tetraquarks
Hua-Xing Chen1*, Wei Chen2*, Rui-Rui Dong3, and Niu Su3
1School of Physics, Southeast University, Nanjing 210094, China
2School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
3School of Physics, Beihang University, Beijing 100191, China
Cite this article:   
Hua-Xing Chen, Wei Chen, Rui-Rui Dong et al  2020 Chin. Phys. Lett. 37 101201
Download: PDF(601KB)   PDF(mobile)(605KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Very recently the LHCb collaboration reported their observation of the first two fully open-flavor tetraquark states, the $X_0(2900)$ of $J^P = 0^+$ and the $X_1(2900)$ of $J^P = 1^-$. We study their possible interpretations using the method of QCD sum rules, paying special attention to an interesting feature of this experiment that the higher resonance $X_1(2900)$ has a width significantly larger than the lower one $X_0(2900)$. Our results suggest that the $X_0(2900)$ can be interpreted as the s-wave $D^{*-}K^{*+}$ molecule state of $J^P = 0^+$, and the $X_1(2900)$ can be interpreted as the p-wave $\bar c \bar s u d$ compact tetraquark state of $J^P = 1^-$. Mass predictions of their bottom partners are also given.
Received: 02 September 2020      Published: 25 September 2020
PACS:  12.38.Lg (Other nonperturbative calculations)  
  11.40.-q (Currents and their properties)  
  12.39.Mk (Glueball and nonstandard multi-quark/gluon states)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11722540 and 12075019), and the Fundamental Research Funds for the Central Universities.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/101201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I10/101201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hua-Xing Chen
Wei Chen
Rui-Rui Dong
and Niu Su
[1] Aaij R 2020 arXiv:2009.00025 [hep-ex]
Aaij R 2020 arXiv:2009.00026[hep-ex]
[2] Zyla P A 2020 Prog. Theor. Exp. Phys. 2020 083C01
[3] Chen H X, Chen W, Liu X and Zhu S L 2016 Phys. Rep. 639 1
[4] Lebed R F, Mitchell R E and Swanson E S 2017 Prog. Part. Nucl. Phys. 93 143
[5] Esposito A, Pilloni A and Polosa A D 2017 Phys. Rep. 668 1
[6] Guo F K, Hanhart C, Meissner U G, Wang Q, Zhao Q and Zou B S 2018 Rev. Mod. Phys. 90 015004
[7] Ali A, Lange J S and Stone S 2017 Prog. Part. Nucl. Phys. 97 123
[8] Olsen S L, Skwarnicki T and Zieminska D 2018 Rev. Mod. Phys. 90 015003
[9] Karliner M, Rosner J L and Skwarnicki T 2018 Annu. Rev. Nucl. Part. Sci. 68 17
[10] Liu Y R, Chen H X, Chen W, Liu X and Zhu S L 2019 Prog. Part. Nucl. Phys. 107 237
[11] Brambilla N, Eidelman S, Hanhart C, Nefediev A, Shen C P, Thomas C E, Vairo A and Yuan C Z 2020 Phys. Rep. 873 1
[12] Abazov V M 2016 Phys. Rev. Lett. 117 022003
[13] Abazov V M 2018 Phys. Rev. D 97 092004
[14] Aaij R 2016 Phys. Rev. Lett. 117 152003
Aaij R 2017 Phys. Rev. Lett. 118 109904
[15] Sirunyan A M 2018 Phys. Rev. Lett. 120 202005
[16] Aaltonen T 2018 Phys. Rev. Lett. 120 202006
[17] Aaboud M 2018 Phys. Rev. Lett. 120 202007
[18] Shifman M A, Vainshtein A I and Zakharov V I 1979 Nucl. Phys. B 147 385
[19] Reinders L J, Rubinstein H and Yazaki S 1985 Phys. Rep. 127 1
[20] Chen W, Chen H X, Liu X, Steele T G and Zhu S L 2017 Phys. Lett. B 773 247
[21] Chen H X, Chen W, Liu X and Zhu S L 2020 arXiv:2006.16027[hep-ph]
[22] Aaij R 2020 arXiv:2006.16957[hep-ex]
[23] Liu X H, Yan M J, Ke H W, Li G and Xie J J 2020 arXiv:2008.07190[hep-ph]
[24] He J and Chen D Y 2020 arXiv:2008.07782[hep-ph]
[25] Yang K C, Hwang W Y P, Henley E M and Kisslinger L S 1993 Phys. Rev. D 47 3001
[26]Narison S 2002 QCD as a Theory of Hadrons: From Partons to Confinement in Cambridge Monographs on Particle Physics, Nuclear Physics, and Cosmology vol 17 p 1 (Cambridge: Cambridge University Press)
[27] Gimenez V, Lubicz V, Mescia F, Porretti V and Reyes J 2005 Eur. Phys. J. C 41 535
[28] Jamin M 2002 Phys. Lett. B 538 71
[29] Ioffe B L and Zyablyuk K N 2003 Eur. Phys. J. C 27 229
[30]Ovchinnikov A A and Pivovarov A A 1988 Sov. J. Nucl. Phys. 48 721
[31] Ellis J R, Gardi E, Karliner M and Samuel M A 1996 Phys. Rev. D 54 6986
[32] Chen H X, Liu X, Hosaka A and Zhu S L 2008 Phys. Rev. D 78 034012
[33] Liu M Z, Xie J J and Geng L S 2020 arXiv:2008.07389[hep-ph]
[34] Huang Y, Lu J X, Xie J J and Geng L S 2020 arXiv:2008.07959[hep-ph]
[35] Molina R and Oset E 2020 arXiv:2008.11171[hep-ph]
[36] Karliner M and Rosner J L 2020 arXiv:2008.05993[hep-ph]
[37] Molina R, Branz T and Oset E 2010 Phys. Rev. D 82 014010
Related articles from Frontiers Journals
[1] Hua-Xing Chen, Niu Su, and Shi-Lin Zhu. QCD Axial Anomaly Enhances the $\eta \eta^\prime$ Decay of the Hybrid Candidate $\eta_1(1855)$[J]. Chin. Phys. Lett., 2022, 39(5): 101201
[2] Si-Xue Qin and Craig D. Roberts. Resolving the Bethe–Salpeter Kernel[J]. Chin. Phys. Lett., 2021, 38(7): 101201
[3] Si-Xue Qin and C. D. Roberts. Impressions of the Continuum Bound State Problem in QCD[J]. Chin. Phys. Lett., 2020, 37(12): 101201
[4] DING Jing-Zhi, JIN Hong-Ying. Quark and Gluon Condensates at Finite Temperatures by the Linear Sigma Model Approach[J]. Chin. Phys. Lett., 2014, 31(08): 101201
[5] ZHANG Zhu-Feng, JIN Hong-Ying, T. G. Steele. Revisiting 1?+ Light Hybrid from Monte-Carlo Based QCD Sum Rules[J]. Chin. Phys. Lett., 2014, 31(05): 101201
[6] MO Xin, LIU Jue-Ping. The Scalar Photon Light-Cone Distribution Amplitude in the Instanton Vacuum Model of QCD[J]. Chin. Phys. Lett., 2014, 31(04): 101201
[7] LU Chang-Fang, LÜ Xiao-Fu. Influence of Quark Current Mass on Quark Condensate at Finite Temperature[J]. Chin. Phys. Lett., 2013, 30(9): 101201
[8] LI Hua, LUO Xin-Lian, JIANG Yu, ZONG Hong-Shi, **. The Renormalized Equation of State and Quark Star[J]. Chin. Phys. Lett., 2010, 27(12): 101201
[9] GUO Xiao-Bo, TAO Jun, LI Lei, WANG Shun-Jin,. Light Flavor Vector and Pseudo Vector Mesons from a Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing Interactions[J]. Chin. Phys. Lett., 2010, 27(6): 101201
[10] GUO Xiao-Bo, TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin,. A Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing[J]. Chin. Phys. Lett., 2009, 26(4): 101201
[11] WANG Zhi-Gang. Reanalysis of the (0+,1+) States Bs0 and Bs1 with QCD Sum Rules[J]. Chin. Phys. Lett., 2008, 25(11): 101201
[12] HUANG Tao, ZUO Fen. Remarks on Two-Dimensional Power Correction in Soft Wall Model[J]. Chin. Phys. Lett., 2008, 25(10): 101201
[13] TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin. A Light-Cone QCD Inspired Effective Hamiltonian Model for Pseudoscalar and Scalar Mesons[J]. Chin. Phys. Lett., 2008, 25(9): 101201
[14] JIN Hong-Ying, LIU Shao-Min, ZHANG Zhu-Feng, LI Xue-Qian. Chiral Suppression and SU(3) Symmetry in Scalar Glueball Decays[J]. Chin. Phys. Lett., 2008, 25(5): 101201
[15] ZHANG Ying, WANG Qing. Gauge Covariant Fermion Propagator in the Presence of Arbitrary External Gauge Field and Its Schwinger--Dyson Equation[J]. Chin. Phys. Lett., 2008, 25(4): 101201
Viewed
Full text


Abstract