CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material |
Han Zhang1,2, Chen Ming2*, Ke Yang3,4, Hao Zeng5, Shengbai Zhang3, and Yi-Yang Sun2* |
1School of Materials Science and Engineering, Shandong University, Jinan 250061, China 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China 3Department of Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA 4School of Physics and Electronics, Hunan University, Changsha 410082, China 5Department of Physics, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
|
|
Cite this article: |
Han Zhang, Chen Ming, Ke Yang et al 2020 Chin. Phys. Lett. 37 097201 |
|
|
Abstract Transparent conducting materials (TCMs) have been widely used in optoelectronic applications such as touchscreens, flat panel displays and thin film solar cells. These applications of TCMs are currently dominated by n-type doped oxides. High-performance p-type TCMs are still lacking due to their low hole mobility or p-type doping bottleneck, which impedes efficient device design and novel applications such as transparent electronics. Here, based on first-principles calculations, we propose chalcogenide perovskite YScS$_{3}$ as a promising p-type TCM. According to our calculations, its optical absorption onset is above 3 eV, which allows transparency to visible light. Its hole conductivity effective mass is 0.48$m_{0}$, which is among the smallest in p-type TCMs, suggesting enhanced hole mobility. It could be doped to p-type by group-II elements on cation sites, all of which yield shallow acceptors. Combining these properties, YScS$_{3}$ holds great promise to enhancing the performance of p-type TCMs toward their n-type counterparts.
|
|
Received: 26 August 2020
Published: 28 August 2020
|
|
|
|
Fund: Y.-Y. Sun was supported by the National Natural Science Foundation of China (Grant No. 11774365). C. Ming was supported by the Natural Science Foundation of Shanghai, China (Grant No. 19ZR1421800) and the Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (Grant No. SKL 201804). H. Zeng was supported by the U.S. NSF (Grant Nos. CBET-1510121 and CBET-1510948). K. Yang and S. Zhang were supported by the U.S. DOE (Grant No. DE-SC0002623). |
|
|
[1] | Ellmer K 2012 Nat. Photon. 6 809 |
[2] | Morales-Masis M, De Wolf S, Woods-Robinson R, Ager J W and Ballif C 2017 Adv. Electron. Mater. 3 1600529 |
[3] | Liu H, Avrutin V, Izyumskaya N, Özgür Ü and Morkoç H 2010 Superlattices Microstruct. 48 458 |
[4] | Beyer W, Hüpkes J and Stiebig H 2007 Thin Solid Films 516 147 |
[5] | Zhang S B 2002 J. Phys.: Condens. Matter 14 R881 |
[6] | Wei S H 2004 Comput. Mater. Sci. 30 337 |
[7] | Woods-Robinson R, Han Y, Zhang H, Ablekim T, Khan I, Persson K A and Zakutayev A 2020 Chem. Rev. 120 4007 |
[8] | Brunin G, Ricci F, Ha V A, Rignanese G M and Hautier G 2019 npj Comput. Mater. 5 63 |
[9] | Zhang K H L, Xi K, Blamire M G and Egdell R G 2016 J. Phys.: Condens. Matter 28 383002 |
[10] | Hautier G, Miglio A, Ceder G, Rignanese G M and Gonze X 2013 Nat. Commun. 4 2292 |
[11] | Bhatia A, Hautier G, Nilgianskul T, Miglio A, Sun J, Kim H J, Kim K H, Chen S, Rignanese G M, Gonze X and Suntivich J 2016 Chem. Mater. 28 30 |
[12] | Williamson B A, Buckeridge J, Brown J, Ansbro S, Palgrave R G and Scanlon D O 2016 Chemistry of Materials acs.chemmater.6b03306 |
[13] | Woods-Robinson R, Broberg D, Faghaninia A, Jain A, Dwaraknath S S and Persson K A 2018 Chem. Mater. 30 8375 |
[14] | Youn Y, Lee M, Kim D, Jeong J K, Kang Y and Han S 2019 Chem. Mater. 31 5475 |
[15] | Varley J B, Miglio A, Ha V A, van Setten M J, Rignanese G M and Hautier G 2017 Chem. Mater. 29 2568 |
[16] | Wei L, Xu X, Gurudayal, Bullock J and Ager J W 2019 Chem. Mater. 31 7340 |
[17] | Kormath Madam Raghupathy R, Kühne T D, Felser C and Mirhosseini H 2018 J. Mater. Chem. C 6 541 |
[18] | Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H and Hosono H 1997 Nature 389 939 |
[19] | Sato H, Minami T, Takata S and Yamada T 1993 Thin Solid Films 236 27 |
[20] | Wang Z, Nayak P K, Caraveo-Frescas J A and Alshareef H N 2016 Adv. Mater. 28 3831 |
[21] | Yang C, Knei M, Lorenz M and Grundmann M 2016 Proc. Natl. Acad. Sci. USA 113 12929 |
[22] | Yamada N, Ino R and Ninomiya Y 2016 Chem. Mater. 28 4971 |
[23] | Huang F Q, Liu M L and Yang C 2011 Sol. Energy Mater. Sol. Cells 95 2924 |
[24] | Sun Y Y, Agiorgousis M L, Zhang P and Zhang S 2015 Nano Lett. 15 581 |
[25] | Perera S, Hui H, Zhao C, Xue H, Sun F, Deng C, Gross N, Milleville C, Xu X, Watson D F, Weinstein B, Sun Y Y, Zhang S and Zeng H 2016 Nano Energy 22 129 |
[26] | Gross N, Sun Y Y, Perera S, Hui H, Wei X, Zhang S, Zeng H and Weinstein B A 2017 Phys. Rev. Appl. 8 044014 |
[27] | Niu S, Milam-Guerrero J, Zhou Y, Ye K, Zhao B, Melot B C and Ravichandran J 2018 J. Mater. Res. 33 4135 |
[28] | Wei X, Hui H, Zhao C, Deng C, Han M, Yu Z, Sheng A, Roy P, Chen A, Lin J, Watson D F, Sun Y Y, Thomay T, Yang S, Jia Q, Zhang S and Zeng H 2020 Nano Energy 68 104317 |
[29] | Niu S, Huyan H, Liu Y, Yeung M, Ye K, Blankemeier L, Orvis T, Sarkar D, Singh D J, Kapadia R and Ravichandran J 2017 Adv. Mater. 29 1604733 |
[30] | Meng W, Saparov B, Hong F, Wang J, Mitzi D B and Yan Y 2016 Chem. Mater. 28 821 |
[31] | Hanzawa K, Iimura S, Hiramatsu H and Hosono H 2019 J. Am. Chem. Soc. 141 5343 |
[32] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[33] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[34] | Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406 |
[35] | Sun J, Ruzsinszky A and Perdew J P 2015 Phys. Rev. Lett. 115 036402 |
[36] | Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 |
[37] | Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390 |
[38] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 |
[39] | Hellman O, Abrikosov I A and Simak S I 2011 Phys. Rev. B 84 180301 |
[40] | Rodier N and Laruelle P 1970 C. R. Acad. Sc. (Paris) C270 2127 |
[41] | Rodier N, Laruelle P and Flahaut J 1969 C. R. Acad. Sc. (Paris) C269 1391 |
[42] | IJdo D 1980 Acta Crystallogr. Sect. B 36 2403 |
[43] | Range K J, Gietl A and Klement U 1993 Z. Kristallogr. 207 147 |
[44] | Glazer A 1972 Acta Crystallogr. Sect. B 28 3384 |
[45] | Yamaoka S and Okai B 1970 Mater. Res. Bull. 5 789 |
[46] | Lee C S, Kleinke K M and Kleinke H 2005 Solid State Sci. 7 1049 |
[47] | Hahn H and Mutschke U 1957 Z. Anorg. Allg. Chem. 288 269 |
[48] | Noel H and Padiou J 1976 Acta Crystallogr. Sect. B 32 1593 |
[49] | Murakami M, Hirose K, Kawamura K, Sata N and Ohishi Y 2004 Science 304 855 |
[50] | Crevecoeur C and Romers C 1964 Proc. Koninklijke Nederlandse Acad. Van Wetenschappen 67 289 |
[51] | Rodier N 1973 Bull. La Societe Francaise Mineralogie Cristallographie 96 350 |
[52] | Kuhar K, Crovetto A, Pandey M, Thygesen K S, Seger B, Vesborg P C K, Hansen O, Chorkendorff I and Jacobsen K W 2017 Energy & Environ. Sci. 10 2579 |
[53] | Sze S M 1969 Physics of Semiconductor Devices (New Jersey: Wiley) |
[54] | Ricci F, Chen W, Aydemir U, Snyder G J, Rignanese G M, Jain A and Hautier G 2017 Sci. Data 4 170085 |
[55] | Freysoldt C, Neugebauer J and van de Walle C G 2009 Phys. Rev. Lett. 102 016402 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|