FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Electro-Optically Switchable Optical True Delay Lines of Meter-Scale Lengths Fabricated on Lithium Niobate on Insulator Using Photolithography Assisted Chemo-Mechanical Etching |
Jun-xia Zhou1,2, Ren-hong Gao3,4, Jintian Lin3,5*, Min Wang1,2, Wei Chu1,2, Wen-bo Li3,4, Di-feng Yin3,4, Li Deng1,2, Zhi-wei Fang1,2, Jian-hao Zhang3,4, Rong-bo Wu3,4and Ya Cheng1,2,3,4,5,6,7* |
1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China 2XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronics Science, East China Normal University, Shanghai 200241, China 3State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Collaborate CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China 6Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China 7Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
|
|
Cite this article: |
Jun-xia Zhou, Ren-hong Gao, Jintian Lin et al 2020 Chin. Phys. Lett. 37 084201 |
|
|
Abstract Optical true delay lines (OTDLs) of low propagation losses, small footprints and high tuning speeds and efficiencies are of critical importance for various photonic applications. Here, we report fabrication of electro-optically switchable OTDLs on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Our device consists of several low-loss optical waveguides of different lengths which are consecutively connected by electro-optical switches to generate different amounts of time delay. The fabricated OTLDs show an ultra-low propagation loss of $\sim 0.03$ dB/cm for waveguide lengths well above 100 cm.
|
|
Received: 28 June 2020
Published: 09 July 2020
|
|
PACS: |
42.82.-m
|
(Integrated optics)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant No. 2019YFA0705000), the National Natural Science Foundation of China (Grant Nos. 11734009, 61590934, and 11874375), the Strategic Priority Research Program of CAS (Grant No. XDB16030300), and the Key Project of the Shanghai Science and Technology Committee (Grant No. 17JC1400400). |
|
|
[1] | Gauthier D 2005 Phys. World 18 30 |
[2] | Perez D, Gasulla I, Crudgington L, Thomson D J, Khokhar A Z, Li K, Cao W, Mashanovich G Z and Capmany J 2017 Nat. Commun. 8 636 |
[3] | Yu L J, Wang H Q, Li H, Wang Z, Huang Y D, You L X and Zhang W 2019 Chin. Phys. Lett. 36 084202 |
[4] | Cui X, Zhang C, Liang S, Zhu H L and Hou L P 2014 Chin. Phys. Lett. 31 044204 |
[5] | Zhao P C, Qi F, Qi A Y, Wang Y F and Zheng W H 2017 Chin. Phys. Lett. 34 024202 |
[6] | Ding Y X, Wang L L and Yu L 2018 Chin. Phys. Lett. 35 014201 |
[7] | Lin J T, Zhou J X, Wu R B, Wang M, Fang Z W, Chu W, Zhang J H, Qiao L L and Cheng Y 2019 Micromachines 10 612 |
[8] | Luo R, He Y, Liang H X, Li M X and Lin Q 2018 Optica 5 1006 |
[9] | Elkus B S, Abdelsalam K, Rao A, Velev V, Fathpour S, Kumar P and Kanter G S 2019 Opt. Express 27 38521 |
[10] | Geiss R, Saravi S, Sergeyev A, Diziain S, Setzpfandt F, Schrempel F, Grange R, Kley E B, Tunnermann A and Pertsch T 2015 Opt. Lett. 40 2715 |
[11] | Siew S Y, Cheung E J H, Liang H D, Bettiol A, Toyoda N, Alshehri B, Dogheche E and Danner A J 2018 Opt. Express 26 4421 |
[12] | Volk M F, Suntsov S, Ruter C E and Kip D 2016 Opt. Express 24 1386 |
[13] | Niu Y, Lin C, Liu X, Chen Y, Hu X, Zhang Y, Cai X, Gong Y X, Xie Z and Zhu S 2020 Appl. Phys. Lett. 116 101104 |
[14] | Zhang M, Wang C, Cheng R, Shams-Ansari A and Lončar M 2017 Optica 4 1536 |
[15] | Zhang J H, Fang Z W, Lin J T, Zhou J X, Wang M, Wu R B, Gao R H and Cheng Y 2019 Nanomaterials 9 1218 |
[16] | Fang Z W, Luo H P, Lin J T, Wang M, Zhang J H, Wu R B, Zhou J X, Chu W, Lu T and Cheng Y 2019 Opt. Lett. 44 5953 |
[17] | Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B, Wang M, Chu W, Wu R B, Fang Z W, Qiao L L, Fang W, Bo F and Cheng Y 2019 Phys. Rev. Lett. 122 173903 |
[18] | Hao Z Z, Wang J, Ma S Q, Mao W B, Bo F, Gao F, Zhang G Q and Xu J J 2017 Photon. Res. 5 623 |
[19] | Wang L, Wang C, Wang J, Bo F, Zhang M, Gong Q H, Loncar M and Xiao Y F 2018 Opt. Lett. 43 2917 |
[20] | He Y, Yang Q F, Ling J, Luo R, Liang H, Li M, Shen B, Wang H, Vahala K and Lin Q 2019 Optica 6 1138 |
[21] | Zheng Y, Fang Z, Liu S, Cheng Y and Chen X 2019 Phys. Rev. Lett. 122 253902 |
[22] | Wolf R, Jia Y, Bonaus S, Werner C S, Herr S J, Breunig I, Buse K and Zappe H 2018 Optica 5 872 |
[23] | Lu J, Surya J B, Liu X, Bruch A W, Gong Z, Xu Y and Tang H X 2019 Optica 6 1455 |
[24] | Lin J, Xu Y, Fang Z, Wang M, Song J, Wang N, Qiao L, Fang W and Cheng Y 2015 Sci. Rep. 5 8072 |
[25] | Wu R B, Lin J T, Wang M, Fang Z W, Chu W, Zhang J H, Zhou J X and Cheng Y 2019 Opt. Lett. 44 4698 |
[26] | Rao A, Patil A, Rabiei P, Honardoost A, Desalvo R, Paolella A and Fathpour S 2016 Opt. Lett. 41 5700 |
[27] | Jin M, Chen J Y, Sua Y M and Huang Y P 2019 Opt. Lett. 44 1265 |
[28] | Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P and Lončar M 2018 Nature 562 101 |
[29] | He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L and Cai X 2019 Nat. Photon. 13 359 |
[30] | Liang H X, Luo R, He Y, Jiang H W and Lin Q 2017 Optica 4 1251 |
[31] | Diziain S, Geiss R, Zilk M, Schrempel F, Kley E B, Tunnermann A and Pertsch T 2013 Appl. Phys. Lett. 103 251101 |
[32] | Xu H, Dai D, Liu L and Shi Y 2020 Opt. Express 28 10899 |
[33] | Ding T, Zheng Y and Chen X 2019 J. Lightwave Technol. 37 1296 |
[34] | Wu R, Wang M, Xu J, Qi J, Chu W, Fang Z, Zhang J, Zhou J, Qiao L, Chai Z, Lin J and Cheng Y 2018 Nanomaterials 8 910 |
[35] | Wang M, Wu R, Lin J, Zhang J, Fang Z, Chai Z and Cheng Y 2019 Quantum Eng. 1 e9 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|