ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap |
Ji Li1,2, Liang Chen1**, Yi-He Chen1, Zhi-Chao Liu1,2, Hang Zhang1,2, Mang Feng1** |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071 2University of the Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Ji Li, Liang Chen, Yi-He Chen et al 2020 Chin. Phys. Lett. 37 053701 |
|
|
Abstract The trapped ions confined in a surface-electrode trap (SET) could be free from rf heating if they stay at the rf potential null of the potential well. We report our effort to compensate three-dimensionally for the micromotion of a single $^{40}$Ca$^{+}$ ion near the rf potential null, which largely suppresses the ion's heating and thus helps to achieve the cooling of the ion down to $3.4$ mK, which is very close to the Doppler limit. This is the prerequisite of the sideband cooling in our SET.
|
|
Received: 21 January 2020
Published: 25 April 2020
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11734018 and 11674360). |
|
|
[1] | Chiaverini J, Blakestad R B, Britton J, Jost J D, Langer C, Leibfried D, Ozeri R and Wineland D J 2005 Quantum Inf. Comput. 5 419 | [2] | Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R and Chuang I L 2006 Phys. Rev. A 73 032307 | [3] | Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N and Wineland D J 2006 Phys. Rev. Lett. 96 253003 | [4] | Labaziewicz J, Ge Y F, Antohi P, Leibrandt D, Brown K R and Chuang I L 2008 Phys. Rev. Lett. 100 013001 | [5] | Labaziewicz J, Ge Y F, Leibrandt D R, Wang S X, Shewmon R and Chuang I L 2008 Phys. Rev. Lett. 101 180602 | [6] | Amini J M, Uys H, Wesenberg J H, Seidelin S, Britton J, Bollinger J J, Leibfried D, Ospelkaus C, VanDevender A P and Wineland D J 2010 New J. Phys. 12 033031 | [7] | Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709 | [8] | Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025 | [9] | Ibaraki Y, Tanaka U and Urabe S 2011 Appl. Phys. B 105 219 | [10] | Eltony A M 2013 MS thesis (USA: Massachusetts Institute of Technology) | [11] | Wu H Y, Xie Y, Wan W, Chen L, Zhou F and Feng M 2014 Appl. Phys. B 114 81 | [12] | Wan W, Wu H Y, Chen L, Zhou F, Gong S J and Feng M 2014 Phys. Rev. A 89 063401 | [13] | Yan L L, Wan W, Chen L, Zhou F, Gong S J, Tong X and Feng M 2016 Sci. Rep. 6 21547 | [14] | Narayanan S, Daniilidis N, Möller S A, Clark R, Ziesel F, Singer K, Schmidt-Kaler F and Häffner H 2011 J. Appl. Phys. 110 114909 | [15] | Keller J, Partner H L, Burgermeister T and Mehlstäubler T E 2015 J. Appl. Phys. 118 104501 | [16] | Tanaka U, Masuda K, Akimoto Y, Koda K, Ibaraki Y and Urabe S 2012 Appl. Phys. B 107 907 | [17] | Xie Y 2013 PhD Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese) | [18] | Roßnagel J, Tolazzi K N, Schmidt-Kaler F and Singer K 2015 New J. Phys. 17 045004 | [19] | Wan W, Chen L, Wu H Y, Xie Y, Zhou F and Feng M 2013 Chin. Phys. Lett. 30 073701 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|