Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 050502    DOI: 10.1088/0256-307X/37/5/050502
GENERAL |
A Direct Derivation of the Dark Soliton Excitation Energy
Li-Chen Zhao1,2, Yan-Hong Qin1,2, Wen-Long Wang3**, Zhan-Ying Yang1,2
1School of Physics, Northwest University, Xi'an 710127
2Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127
3College of Physics, Sichuan University, Chengdu 610065
Cite this article:   
Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang et al  2020 Chin. Phys. Lett. 37 050502
Download: PDF(409KB)   PDF(mobile)(400KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dark solitons are common topological excitations in a wide array of nonlinear waves. The dark soliton excitation energy is crucial for exploring dark soliton dynamics and is necessarily calculated in a renormalized form due to its existence on a finite background. Despite its tremendous importance and success, the renormalized energy form was at first only suggested with no detailed derivation, and was then "derived" in the grand canonical ensemble. We revisit this fundamental problem and provide an alternative and intuitive derivation of the energy form from the fundamental field energy by utilizing a limiting procedure that conserves number of particles. Our derivation yields the same result, thus putting the dark soliton energy form on a solid basis.
Received: 03 January 2020      Published: 25 April 2020
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11775176), the Basic Research Program of Natural Science of Shaanxi Province, China (Grant No. 2018KJXX-094), the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province, China (Grant No. 2017KCT-12), and the Major Basic Research Program of Natural Science of Shaanxi Province, China (Grant No. 2017ZDJC-32). Wen-Long Wang acknowledges support from the Fundamental Research Funds for the Central Universities of China.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/050502       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/050502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li-Chen Zhao
Yan-Hong Qin
Wen-Long Wang
Zhan-Ying Yang
[1]Zakharov V E and Shabat A B 1973 Sov. Phys.-JETP 37 823
[2]Kivshar Y S and Luther-Davies B 1998 Phys. Rep. 298 81
[3]Denardo B, Wright S, Putterman W and Larraza A 1990 Phys. Rev. Lett. 64 1518
[4]Chen M, Tsankov M A, Nash J M and Patton C E 1993 Phys. Rev. Lett. 70 1707
[5]Emplit P, Hamaide J P, Reynaud F, Froehly C and Barthelemy A 1987 Opt. Commun. 62 374
[6]Krökel D, Halas N J, Giuliani G and Grischkowsky D 1988 Phys. Rev. Lett. 60 29
[7]Weiner A M, Heritage J P, Hawkins R J, Thurston R N, Kirschner E M, Leaird D E and Tomlinson W J 1988 Phys. Rev. Lett. 61 2445
[8]Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[9]Stellmer S, Becker C, Soltan-Panahi P, Richter E M, Drscher S, Baumert M, Kronjger J, Bongs K and Sengstock K 2008 Phys. Rev. Lett. 101 120406
[10]Kivshar Y S and Yang X 1994 Phys. Rev. E 49 1657
[11]Kivshar Y S and Królikowski W 1995 Opt. Commun. 114 353
[12]Busch T and Anglin J R 2000 Phys. Rev. Lett. 84 2298
[13]Muryshev A, Shlyapnikov G V, Ertmer W, Sengstock K and Lewenstein M 2002 Phys. Rev. Lett. 89 110401
[14]Konotop V V and Pitaevskii L P 2004 Phys. Rev. Lett. 93 240403
[15]Brazhnyi V A, Konotop V V and Pitaevskii L P 2006 Phys. Rev. A 73 053601
[16]Pelinovsky D E and Kevrekidis P G 2008 Z. Angew. Math. Phys. 59 559
[17]Aycocka M L, Hurst H M, Emkin D K, Genkina D, Lu H, Galitski V M and Spielman I B 2017 Proc. Natl. Acad. Sci. USA 114 2503
[18]Hurst H M, Efimkin D K, Spielman I B and Galitski V 2017 Phys. Rev. A 95 053604
[19]Serkin V N 2018 Optik 173 1
[20]Kevrekidis P G, Wang W, Carretero-González R and Frantzeskakis D J 2017 Phys. Rev. Lett. 118 244101
[21]Cisneros-Ake L A, Carretero-González R and Kevrekidis P G 2019 Phys. Rev. Res. 1 033043
[22]Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G and Kevrekidis P G 2008 Phys. Rev. Lett. 101 130401
[23]Becker C, Stellmer S, Soltan-Panahi P, Dörscher S, Baumert M, Richter E M, Kronjäger J, Bongs K and Sengstock K 2008 Nat. Phys. 4 496
[24]Frantzeskakis D J 2010 J. Phys. A 43 213001
[25]Busch T and Anglin J R 2001 Phys. Rev. Lett. 87 010401
[26]Alotaibi M O D and Carr L D 2017 Phys. Rev. A 96 013601
[27]Qu C, Pitaevskii L P and Stringari S 2016 Phys. Rev. Lett. 116 160402
[28]Zhao L C, Wang W, Tang Q, Yang Z Y, Yang W L and Liu J 2019 arXiv:1906.10296
[29]Pitaevskii L P 2016 Phys.-Usp. 59 1028
[30]Romero-Ros A, Katsimiga G C, Kevrekidis P G and Schmelcher P 2019 Phys. Rev. A 100 013626
[31]Anderson B P, Haljan P C, Wieman C E and Cornell E A 2000 Phys. Rev. Lett. 85 2857
[32]Parker N G, Proukakis N P, Barenghi C F and Adams C S 2004 Phys. Rev. Lett. 92 160403
[33]Fetter Alexander L 2014 Phys. Rev. A 89 023629
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 050502
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 050502
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 050502
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 050502
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 050502
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 050502
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 050502
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 050502
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 050502
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 050502
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 050502
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 050502
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 050502
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 050502
[15] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 050502
Viewed
Full text


Abstract