Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 053702    DOI: 10.1088/0256-307X/37/5/053702
ATOMIC AND MOLECULAR PHYSICS |
Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice
Qijin Chen1,2,3**, Jibiao Wang4**, Lin Sun2, Yi Yu5
1Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315
2Department of Physics and Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027
3Synergetic Innovation Center of Quantum Information and Quantum Physics, Hefei 230026
4Laboratory of Quantum Engineering and Quantum Metrology, School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082
5College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014
Cite this article:   
Qijin Chen, Jibiao Wang, Lin Sun et al  2020 Chin. Phys. Lett. 37 053702
Download: PDF(865KB)   PDF(mobile)(1297KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the superfluid behavior of a population imbalanced ultracold atomic Fermi gases with a short range attractive interaction in a one-dimensional (1D) optical lattice, using a pairing fluctuation theory. We show that, besides widespread pseudogap phenomena and intermediate temperature superfluidity, the superfluid phase is readily destroyed except in a limited region of the parameter space. We find a new mechanism for pair hopping, assisted by the excessive majority fermions, in the presence of continuum-lattice mixing, which leads to an unusual constant Bose-Einstein condensate (BEC) asymptote for $T_{\rm c}$ that is independent of pairing strength. In result, on the BEC side of unitarity, superfluidity, when it exists, may be strongly enhanced by population imbalance.
Received: 31 March 2020      Published: 20 April 2020
PACS:  37.10.Jk (Atoms in optical lattices)  
  67.85.-d (Ultracold gases, trapped gases)  
  74.25.Dw (Superconductivity phase diagrams)  
  03.75.Ss (Degenerate Fermi gases)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11774309 and 11674283) and the Natural Science Foundation of Zhejiang Province of China (Grant No. LZ13A040001).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/053702       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/053702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qijin Chen
Jibiao Wang
Lin Sun
Yi Yu
[1]Chen Q J, Stajic J, Tan S N and Levin K 2005 Phys. Rep. 412 1
[2]Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[3]Zwierlein M W, Schirotzek A, Schunck C H and Ketterle W 2006 Science 311 492
[4]Partridge G B, Li W, Kamar R I, Liao Y A and Hulet R G 2006 Science 311 503
[5]Chen Q J, He Y, Chien C C and Levin K 2006 Phys. Rev. A 74 063603
[6]Radzihovsky L and Sheehy D E 2010 Rep. Prog. Phys. 73 076501
[7]Yi W and Duan L M 2006 Phys. Rev. A 73 031604(R)
[8]Pao C H, Wu S T and Yip S K 2006 Phys. Rev. B 73 132506
[9]Forbes M M, Gubankova E, Liu W V and Wilczek F 2005 Phys. Rev. Lett. 94 017001
[10]Chien C C, Chen Q J, He Y and Levin K 2006 Phys. Rev. Lett. 97 090402
[11]Chen Q J, He Y, Chien C C and Levin K 2007 Phys. Rev. B 75 014521
[12]Chen Q J, Kosztin I, Jankó B and Levin K 1999 Phys. Rev. B 59 7083
[13]Hofstetter W, Cirac J I, Zoller P, Demler E and Lukin M D 2002 Phys. Rev. Lett. 89 220407
[14]Bloch I 2005 Nat. Phys. 1 23
[15]Köhl M, Moritz H, Stöferle T, Günter K and Esslinger T 2005 Phys. Rev. Lett. 94 080403
[16]Cazalilla M A, Ho A F and Giamarchi T 2005 Phys. Rev. Lett. 95 226402
[17]Orso G, Pitaevskii L P, Stringari S and Wouters M 2005 Phys. Rev. Lett. 95 060402
[18]Koponen T, Kinnunen J, Martikainen J P, Jensen L M and Törmä P 2006 New J. Phys. 8 179
[19]Chien C C, He Y, Chen Q J and Levin K 2008 Phys. Rev. A 77 011601
[20]Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[21]Cai Z, Wang Y and Wu C 2011 Phys. Rev. A 83 063621
[22]Cichy A and Micnas R 2014 Ann. Phys. 347 207
[23]Ong W, Cheng C, Arakelyan I and Thomas J E 2015 Phys. Rev. Lett. 114 110403
[24]Kangara J, Cheng C, Pegahan S, Arakelyan I and Thomas J E 2018 Phys. Rev. Lett. 120 083203
[25]An optical lattice in a theory paper in the literature often refers to a pure lattice in the context of a Hubbard model. Namely, a 1DOL means a simple 1D atomic chain. This is different from the 1DOL we study here.
[26]Chen Q J, Kosztin I, Jankó B and Levin K 1998 Phys. Rev. Lett. 81 4708
[27]Chen Q J and Wang J B 2014 Front. Phys. 9 539
[28]Yu Y and Chen Q J 2010 Physica C 470 S900
[29]Kinnunen J, Rodriguez M and Törmä P 2004 Science 305 1131
[30]Lin G D, Yi W and Duan L M 2006 Phys. Rev. A 74 031604(R)
[31]He L, Huang X G, Hu H and Liu X J 2013 Phys. Rev. A 87 053616
[32]Considering changing $t$ and $d$, here we define $k_{\rm F}$ and $T_{\rm F}$ as given by a homogeneous, unpolarized, noninteracting Fermi gas with the same total number density $n$ in 3D.
[33]Nozières P and Schmitt-Rink S 1985 J. Low Temp. Phys. 59 195
[34]Note that Eq. (5) depends on the product $a_0\mathit{\Delta}^2$ and the ratio $a_0/a_1$, but not on $\mathit{\Delta}$ separately.
[35]Che Y M, Wang J B and Chen Q J 2016 Phys. Rev. A 93 063611
[36]Berezinskii V L 1972 Sov. Phys.-JETP 34 610
[37]Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 053702
[2] Yi Li, Jia-Hui Zhang, Feng Mei, Jie Ma, Liantuan Xiao, and Suotang Jia. Generalized Aubry–André–Harper Models in Optical Superlattices[J]. Chin. Phys. Lett., 2022, 39(6): 053702
[3] Shifeng Yang, Tianwei Zhou, Chen Li, Kaixiang Yang, Yueyang Zhai, Xuguang Yue, Xuzong Chen. Superfluid-Mott-Insulator Transition in an Optical Lattice with Adjustable Ensemble-Averaged Filling Factors[J]. Chin. Phys. Lett., 2020, 37(4): 053702
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 053702
[5] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 053702
[6] Ben-quan Lu, Yebing Wang, Yang Guo, Qinfang Xu, Mojuan Yin, Jiguang Li, Hong Chang. Experimental Determination of the Landé $g$-Factors for 5$s^{2}$$^{1}\!S$ and $5s5p$$^{3}\!P$ States of the $^{87}$Sr Atom[J]. Chin. Phys. Lett., 2018, 35(4): 053702
[7] Dong-Ling Deng, Sheng-Tao Wang, Kai Sun, L.-M. Duan. Probe Knots and Hopf Insulators with Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(1): 053702
[8] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 053702
[9] Dong Hu, Lin-Xiao Niu, Jia-Hua Zhang, Xin-Hao Zou, Shu-Yang Cao, Xiao-Ji Zhou. Coupled Two-Dimensional Atomic Oscillation in an Anharmonic Trap[J]. Chin. Phys. Lett., 2017, 34(7): 053702
[10] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 053702
[11] Qiang Wang, Yi-Ge Lin, Fei Meng, Ye Li, Bai-Ke Lin, Er-Jun Zang, Tian-Chu Li, Zhan-Jun Fang. Magic Wavelength Measurement of the $^{87}$Sr Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2016, 33(10): 053702
[12] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 053702
[13] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 053702
[14] YU Geng-Hua, XU Qi-Ming, ZHOU Chao, DUAN Cheng-Bo, LI Long, CHAI Rui-Peng. Magic Wavelengths of the Optical Clock Transition at 1107 nm of Barium[J]. Chin. Phys. Lett., 2015, 32(03): 053702
[15] WANG Qiang, LIN Yi-Ge, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. Observation of Spin Polarized Clock Transition in 87Sr Optical Lattice Clock[J]. Chin. Phys. Lett., 2014, 31(12): 053702
Viewed
Full text


Abstract