Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 040201    DOI: 10.1088/0256-307X/37/4/040201
GENERAL |
Lax Pairs of Integrable Systems in Bidifferential Graded Algebras
Danda Zhang1, Da-Jun Zhang2, Sen-Yue Lou3**
1School of Mathematics and Statistics, Ningbo University, Ningbo 315211
2Department of Mathematics, Shanghai University, Shanghai 200444
3School of Physical Science and Technology, Ningbo University, Ningbo 315211
Cite this article:   
Danda Zhang, Da-Jun Zhang, Sen-Yue Lou 2020 Chin. Phys. Lett. 37 040201
Download: PDF(416KB)   PDF(mobile)(415KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Lax pairs regarded as foundations of the inverse scattering methods play an important role in integrable systems. In the framework of bidifferential graded algebras, we propose a straightforward approach to constructing the Lax pairs of integrable systems in functional environment. Some continuous equations and discrete equations are presented.
Received: 11 December 2019      Published: 24 March 2020
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
Fund: Supported by the National Natural Science Foundation of China (Nos. 11875040, 11435005, 11975131, and 11801289), and the K. C. Wong Magna Fund in Ningbo University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/040201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/040201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Danda Zhang
Da-Jun Zhang
Sen-Yue Lou
[1]Ablowitz M J, Chakravarty S and Halburd R G 2003 J. Math. Phys. 44 3147
[2]Dimakis A and Müller-Hoissen F 2000 Rep. Math. Phys. 46 203
[3]Dimakis A and Müller-Hoissen F 2000 J. Phys. A 33 957
[4]Crampin M, Sarlet W and Thompson G 2000 J. Phys. A 33 8755
[5]Dimakis A and Müller-Hoissen F 2010 SIGMA 6 055
[6]Dimakis A and Müller-Hoissen 2010 Inverse Probl. 26 095007
[7]Chvartatskyi O, Müller-Hoissen F and Stoilov N 2015 J. Math. Phys. 56 103512
[8]Dimakis A and Müller-Hoissen F 2000 J. Phys. A 33 6579
[9]Dimakis A and Müller-Hoissen F 2009 Discr. Cont. Dyn. Syst. Suppl. 2009 208
[10]Dimakis A and Müller-Hoissen F 2013 SIGMA 9 009
[11]Chvartatskyi O, Dimakis A and Müller-Hoissen F 2015 Lett. Math. Phys. 106 08
[12]Zhao S L, Zhang D J and Shi Y 2012 Chin. Ann. Math. Ser. B 33 259
[13]Zhang D J and Zhao S L 2013 Stud. Appl. Math. 131 72
[14]Xu D D, Zhang D J and Zhao S L 2014 J. Nonlinear Math. Phys. 21 382
[15]Dimakis A and Müller-Hoissen F 2018 arXiv:1801.00589
[16]Lüscher M and Pohlmeyer K 1978 Nucl. Phys. B 137 46
[17]Brézin E, Itzykson C, Zinn-Justin J and Zuber J B 1979 Phys. Lett. B 82 442
[18]Fu W and Nijhoff F W 2017 Proc. R. Soc. A 473 20160915
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 040201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 040201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 040201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 040201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 040201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 040201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 040201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 040201
[10] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 040201
[11] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 040201
[12] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 040201
[13] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 040201
[14] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 040201
[15] Ya-Hong Hu, Jun-Chao Chen. Solutions to Nonlocal Integrable Discrete Nonlinear Schr?dinger Equations via Reduction[J]. Chin. Phys. Lett., 2018, 35(11): 040201
Viewed
Full text


Abstract