Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 034202    DOI: 10.1088/0256-307X/37/3/034202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection
Jian-Hui Ma1, Hui-Qin Hu1, Yu Chen1, Guang-Jian Xu1, Hai-Feng Pan1, E Wu1,2**
1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006
Cite this article:   
Jian-Hui Ma, Hui-Qin Hu, Yu Chen et al  2020 Chin. Phys. Lett. 37 034202
Download: PDF(727KB)   PDF(mobile)(722KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose and demonstrate a high efficiency broadband near infrared single-photon upconversion and detection with a broadband pump laser based on sum frequency conversion in the PPLN crystal. By using a pump laser centered at 1040 nm with a spectral bandwidth of 10 nm, the signal single-photons centered at 1562 nm with a broadband bandwidth up to 7.2 nm are frequency-converted from the near infrared to the visible regime. A maximum conversion efficiency of 18.8% is achieved, while the background noise is measured to be only $1.2\times 10^{-3}$ counts/pulse. The corresponding spectral linewidth of the upconverted photons is 0.2 nm. This scheme of broadband infrared single-photon upconversion and detection provides potential solutions in infrared laser ranging, broadband infrared imaging and quantum key distribution.
Received: 13 December 2019      Published: 22 February 2020
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.62.Fi (Laser spectroscopy)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11722431, 11674099 and 11621404, and the Program of Introducing Talents of Discipline to Universities under Grant No. B12024.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/3/034202       OR      https://cpl.iphy.ac.cn/Y2020/V37/I3/034202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian-Hui Ma
Hui-Qin Hu
Yu Chen
Guang-Jian Xu
Hai-Feng Pan
E Wu
[1]Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[2]Bennett C H 1992 Phys. Rev. Lett. 68 3121
[3]Wilk T, Webster S C, Kuhn A and Rempe G 2007 Science 317 488
[4]Chaneliere T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B and Kuzmich A 2005 Nature 438 833
[5]Kimble H J 2008 Nature 453 1023
[6]Humphreys P C, Kalb N, Morits J P J, Schouten R N, Vermeulen R F, Twitchen D J, Markham M and Hanson R 2018 Nature 558 268
[7]Sun Q C, Mao Y L, Chen S J, Zhang W, Jiang Y F, Zhang Y B, Zhang W J, Miki S, Yamashita T, Terai H, Jiang X, Chen T Y, You L X, Chen X F, Wang Z, Fan J Y, Zhang Q and Pan J W 2016 Nat. Photon. 10 671
[8]Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[9]Liao S K, Cai W Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J G, Liu W Y, Li Y, Shen Q, Cao Y, Li F Z, Wang J F, Huang Y M, Deng L, Xi T, Ma L, Hu T, Li L, Liu N L, Koidl F, Wang P, Chen Y A, Wang X B, Steindorfer M, Kirchner G, Lu C Y, Shu R, Ursin R, Scheidl T, Peng C Z, Wang J Y, Zeilinger A and Pan J W 2018 Phys. Rev. Lett. 120 030501
[10]Mao Y, Wang B X, Zhao C, Wang G, Wang R, Wang H, Zhou F, Nie J, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T and Pan J 2018 Opt. Express 26 6010
[11]Huo M, Qin J, Cheng J, Yan Z, Qin Z, Su X, Jia X, Xie C and Peng K 2018 Sci. Adv. 4 eaas9401
[12]Seri A, Corrielli G, Lago-Rivera D, Lenhard A, Riedmatten H, Osellame R and Mazzera M 2018 Optica 5 934
[13]Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photon. 3 706
[14]Tanzilli S, Tittel W, Halder M, Alibart O, Baldi P, Gisin N and Zbinden H 2005 Nature 437 116
[15]Ikuta R, Kusaka Y, Kitano T, Kato H, Yamamoto T, Koashi M and Imoto N 2011 Nat. Commun. 2 537
[16]Zhou Z Y, Li Y, Ding D S, Zhang W, Shi S, Shi B S and Guo G C 2016 Light: Sci. & Appl. 5 e16019
[17]Pelc J S, Yu L, De Greve K, McMahon P L, Natarajan C M, Esfandyarpour V, Maier S, Schneider C, Kamp M, Höfling S, Hadfield R H, Forchel A, Yamamoto Y and Fejer M M 2012 Opt. Express 20 27510
[18]Dréau A, Tchebotareva A, El Mahdaoui A, Bonato C and Hanson R 2018 Phys. Rev. A 9 064031
[19]Ma J, Chen X, Hu H, Pan H, Wu E and Zeng H 2016 Opt. Express 24 20973
[20]Langrock C, Diamanti E, Roussev R V, Yamamoto Y, Fejer M M and Takesue H 2005 Opt. Lett. 30 1725
[21]Gu X, Huang K, Li Y, Pan H, Wu E and Zeng H 2010 Appl. Phys. Lett. 96 131111
[22]Eisaman M D, Fan J, Migdall A and Polyakov S V 2011 Rev. Sci. Instrum. 82 071101
[23]Markov A, Mazhorova A, Breitenborn H, Bruhacs A, Clerici M, Modotto D, Jedrkiewicz O, Trapani P, Major A, Vidal F and Morandotti R 2018 Opt. Express 26 4448
[24]Choge D K, Chen H X, Xu Y B, Guo L, Li G W and Liang W G 2018 Appl. Opt. 57 5459
[25]Suchowski H, Oron D, Arie A and Silberberg Y 2008 Phys. Rev. A 78 063821
[26]Neely T W, Nugent-Glandorf L, Adler F and Diddams S A 2012 Opt. Lett. 37 4332
[27]Grechin S G, Dmitriev V G, Dyakov V A and Pryalkin V I 2004 Quantum Electron. 34 461
[28]Gagarskiy S, Grechin S, Druzhinin P, Kato K, Kochiev D, Nikolaev P and Umemura N 2018 Crystals 8 386
[29]Lavoie J, Donohue J M, Wright L G, Fedrizzi A and Resch K J 2013 Nat. Photon. 7 363
[30]Jundt D H 1997 Opt. Lett. 22 1553
[31]Allgaier M, Ansari V, Sansoni L, Eigner C, Quiring V, Ricken R, Harder G, Brecht B and Silberhorn C 2017 Nat. Commun. 8 14288
[32]Wabnitz S, Picozzi A, Tonello A, Modotto D and Millot G 2012 J. Opt. Soc. Am. B 29 3128
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 034202
[2] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 034202
[3] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 034202
[4] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 034202
[5] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 034202
[6] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 034202
[7] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 034202
[8] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 034202
[9] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 034202
[10] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 034202
[11] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 034202
[12] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 034202
[13] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 034202
[14] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 034202
[15] Wen-Jing Cheng, Guo Liang, Ping Wu, Tian-Qing Jia, Zhen-Rong Sun, Shi-An Zhang. Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure, Laser Spectrum Bandwidth and Central Frequency[J]. Chin. Phys. Lett., 2017, 34(8): 034202
Viewed
Full text


Abstract