Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 020301    DOI: 10.1088/0256-307X/37/2/020301
GENERAL |
Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K
Xue-Jing Feng, Lan Yin**
School of Physics, Peking University, Beijing 100871
Cite this article:   
Xue-Jing Feng, Lan Yin 2020 Chin. Phys. Lett. 37 020301
Download: PDF(604KB)   PDF(mobile)(597KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study a homogeneous two-component dipolar Fermi gas with 1D spin-orbit coupling (SOC) at zero temperature and find that the system undergoes a transition from the paramagnetic phase to the ferromagnetic phase under suitable dipolar interaction constant $\lambda_{\rm d}$, SOC constant $\lambda_{\rm SOC}$ and contact interaction constant $\lambda_{\rm s}$. This phase transition can be of either 1st order or 2nd order, depending on the parameters. Near the 2nd-order phase transition, the system is partially magnetized in the ferromagnetic phase. With SOC, the ferromagnetic phase can even exist in the absence of the contact interaction. The increase in dipolar interaction, SOC strength, and contact interaction are all helpful to stabilize the ferromagnetic state. The critical dipolar interaction strength at the phase transition can be reduced by the increase in SOC strength or contact interaction. Phase diagrams of these systems are obtained.
Received: 29 September 2019      Published: 18 January 2020
PACS:  03.75.Ss (Degenerate Fermi gases)  
  67.85.-d (Ultracold gases, trapped gases)  
  67.85.Lm (Degenerate Fermi gases)  
  05.30.Fk (Fermion systems and electron gas)  
Fund: Supported by the Chinese National Key Research and Development Project of China under Grant No. 2016YFA0301501.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/2/020301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I2/020301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xue-Jing Feng
Lan Yin
[1]Ni K K, Ospelkaus S, de Miranda M H G, Pe'Er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
[2]Bo Y, Moses S A, Bryce G, Covey J P, Hazzard K R A, Ana Maria R, Jin D S and Jun Y 2013 Nature 501 521
[3]Chotia A, Neyenhuis B, Moses S A, Yan B, Covey J P, Foss-Feig M, Rey A M, Jin D S and Ye J 2012 Phys. Rev. Lett. 108 080405
[4]Ni K K, Ospelkaus S, Wang D, Qu {A}m {A}{}ner G, Neyenhuis B, de Miranda M H G, Bohn J L, Ye J and Jin D S 2010 Nature 464 1324
[5]Wu C H, Park J W, Ahmadi P, Will S and Zwierlein M W 2012 Phys. Rev. Lett. 109 085301
[6]Lu M, Burdick N Q and Lev B L 2012 Phys. Rev. Lett. 108 215301
[7]Miyakawa T, Sogo T and Pu H 2008 Phys. Rev. A 77 061603
[8]Ronen S and Bohn J L 2010 Phys. Rev. A 81 033601
[9]Fregoso B M and Fradkin E 2009 Phys. Rev. Lett. 103 205301
[10]You L and Marinescu M 1999 Phys. Rev. A 60 2324
[11]Cooper N R and Shlyapnikov G V 2009 Phys. Rev. Lett. 103 155302
[12]Levinsen J, Cooper N R and Shlyapnikov G V 2011 Phys. Rev. A 84 013603
[13]Wu C and Hirsch J E 2010 Phys. Rev. B 81 020508
[14]Pikovski A, Klawunn M, Shlyapnikov G V and Santos L 2010 Phys. Rev. Lett. 105 215302
[15]Gadsbølle A L and Bruun G M 2012 Phys. Rev. A 86 033623
[16]Liu B and Yin L 2012 Phys. Rev. A 86 031603
[17]Liu B and Yin L 2011 Phys. Rev. A 84 043630
[18]Gorshkov A V, Manmana S R, Chen G, Ye J, Demler E, Lukin M D and Rey A M 2011 Phys. Rev. Lett. 107 115301
[19]Liao R and Brand J 2010 Phys. Rev. A 82 063624
[20]Zeng T S and Yin L 2014 Phys. Rev. B 89 174511
[21]Bhongale S G, Mathey L, Tsai S W, Clark C W and Zhao E 2012 Phys. Rev. Lett. 108 145301
[22]Yamaguchi Y, Sogo T, Ito T and Miyakawa T 2010 Phys. Rev. A 82 013643
[23]Burdick N Q, Tang Y and Lev B L 2016 Phys. Rev. X 6 031022
[24]Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523
[25]Victor G and Spielman I B 2013 Nature 494 49
[26]Zhai H 2015 Rep. Prog. Phys. 78 026001
[27]Lin Y J, Jiménez-Garcí K, and Spielman I B 2011 Nature 471 83
[28]Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[29]Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
[30]Zheng W, Yu Z Q, Cui X and Zhai H 2013 J. Phys. B At. Mol. & Opt. Phys. 46 134007
[31]Li Y and Wu C 2012 Phys. Rev. B 85 205126
[32]Sogo T, Urban M, Schuck P and Miyakawa T 2012 Phys. Rev. A 85 031601
[33]Deng Y, You L and Yi S 2018 Phys. Rev. A 97 053609
Related articles from Frontiers Journals
[1] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 020301
[2] Jing-Bo Wang, Jian-Song Pan, Xiaoling Cui, and Wei Yi. Quantum Droplets in a Mixture of Bose–Fermi Superfluids[J]. Chin. Phys. Lett., 2020, 37(7): 020301
[3] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 020301
[4] Ya-Dong Song, Xiao-Ming Cai. Properties of One-Dimensional Highly Polarized Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(11): 020301
[5] Yi-Cong Yu, Xi-Wen Guan. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive $SU(w)$ Fermi Gases[J]. Chin. Phys. Lett., 2017, 34(7): 020301
[6] Xiao-Xia Ruan, Hao Gong, Yuan-Mei Shi , Hong-Shi Zong. Specific Heat of a Unitary Fermi Gas Including Particle-Hole Fluctuation[J]. Chin. Phys. Lett., 2016, 33(11): 020301
[7] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 020301
[8] DENG Shu-Jin, DIAO Peng-Peng, YU Qian-Li, WU Hai-Bin. All-Optical Production of Quantum Degeneracy and Molecular Bose–Einstein Condensation of 6Li[J]. Chin. Phys. Lett., 2015, 32(5): 020301
[9] CHEN Ke-Ji, ZHANG Wei. Nematic Ferromagnetism on the Lieb Lattice[J]. Chin. Phys. Lett., 2014, 31(11): 020301
[10] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 020301
[11] RUAN Xiao-Xia, GONG Hao, DU Long, JIANG Yu, SUN Wei-Min, ZONG Hong-Shi. Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity[J]. Chin. Phys. Lett., 2013, 30(11): 020301
[12] QI Xiu-Ying, ZHANG Ai-Xia, XUE Ju-Kui. Dynamics of Dark Solitons in Superfluid Fermi Gases[J]. Chin. Phys. Lett., 2013, 30(11): 020301
[13] WANG Ya-Hui, and MA Zhong-Qi. Ground State Energy of 1D Attractive δ-Function Interacting Fermi Gas[J]. Chin. Phys. Lett., 2012, 29(8): 020301
[14] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 020301
[15] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 020301
Viewed
Full text


Abstract