Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 107801    DOI: 10.1088/0256-307X/36/10/107801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Computational Simulation of Sodium Doublet Line Intensities in Multibubble Sonoluminescence
Jin-Fu Liang1,4**, Yu An2, Wei-Zhong Chen3
1School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025
2Department of Physics, Tsinghua University, Beijing 100084
3Institution of Acoustics, Nanjing University, Nanjing 210093
4Key Laboratory of Radio Astronomy of Guizhou Province, Guiyang 550025
Cite this article:   
Jin-Fu Liang, Yu An, Wei-Zhong Chen 2019 Chin. Phys. Lett. 36 107801
Download: PDF(696KB)   PDF(mobile)(698KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We perform a computational simulation of the fluid dynamics of sodium doublet (Na-D) line emissions from one sonoluminescing bubble among the cavitation bubbles in argon-saturated Na hydroxide (NaOH) aqueous solutions. Our simulation includes the distributions of acoustic pressures and the dynamics of cavitation bubbles by numerically solving the cavitation dynamic equation and bubble-pulsation equation. The simulation results demonstrate that when the maximum temperature inside a luminescing bubble is relatively low, two emission peaks from excited Na are prominent within the emission spectra, at wavelengths of 589.0 and 589.6 nm. As the maximum temperature of the bubble increases, the two peaks merge into one peak and the full width at half maximum of this peak increases. These calculations match with the observations of Na-D line emissions from MBSL occurring in aqueous solutions of NaOH under an argon gas.
Received: 02 July 2019      Published: 21 September 2019
PACS:  78.60.Mq (Sonoluminescence, triboluminescence)  
  47.55.dd (Bubble dynamics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11864007, 11564006 and 11574150, and the Science and Technology Planning Project of Guizhou Province under Grant No [2018]5769.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/107801       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/107801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jin-Fu Liang
Yu An
Wei-Zhong Chen
[1]Suslick K S, Eddingsaas N C, Flannigan D J, Hopkins S D and Xu H 2018 Acc. Chem. Res. 51 2169
[2]Brenner M P, Hilgenfeldt S and Lohse D 2002 Rev. Mod. Phys. 74 425
[3]McNamara I I I W B, Didenko Y T and Suslick K S 1999 Nature 401 772
[4]Yasui K 2001 Phys. Rev. E 64 016310
[5]An Y and Li C 2008 Phys. Rev. E 78 046313
[6]Xu H, Eddingsaas N C and Suslick K S 2009 J. Am. Chem. Soc. 131 6060
[7]Zhao T Y, Chen W Z, Liang S D, Wang X and Wang Q 2017 Chin. Phys. Lett. 34 064301
[8]Keller J B and Miksis M 1980 J. Acoust. Soc. Am. 68 628
[9]Hamilton M F, Ilinskii Y A and Zabolotskaya E A 1998 Dispersion in Nonlinear Acoustics (San Diego: Academic Press)
[10]An Y and Li C 2009 Phys. Rev. E 80 046320
[11]Nakajima R, Hayashi Y and Choi P K 2015 Jpn. J. Appl. Phys. 54 07HE02
[12]Mavrodineanu R and Boiteux H 1965 Flame Spectroscopy (New York: Wiley)
Related articles from Frontiers Journals
[1] Sergej Aman**, Juergen Tomas, A. Streletskii . Fast Modification of Microdischarge Emission Bands by Fracture of Sugar[J]. Chin. Phys. Lett., 2011, 28(8): 107801
[2] LU Tao, AN Yu. Effect of Physical Parameters on Shape Instability of Sonoluminescing Bubbles[J]. Chin. Phys. Lett., 2006, 23(4): 107801
[3] CHEN Qi-Dai, WANG Long. Luminescence from Tube-Arrest Bubbles in Pure Glycerin[J]. Chin. Phys. Lett., 2004, 21(9): 107801
[4] Ahmad Moshaii, Rasool Sadighi-Bonabi, Mohammad Taeibi-Rahni, Mehdi Daemi. Effects of Liquid Second Viscosity in High-Amplitude Sonoluminescence[J]. Chin. Phys. Lett., 2004, 21(2): 107801
[5] LI Sheng-Qiong, CHEN Wei-Zhong, JIANG Li-An, ZHU Yi-Fei, WANG Chao. Single Bubble Sonoluminescence Driven by Biharmonic Ultrasound[J]. Chin. Phys. Lett., 2003, 20(11): 107801
[6] AN Yu, XIE Chong-Guo, YING Chong-Fu. Effect of Water Vapor to Temperature Inside Sonoluminescing Bubble[J]. Chin. Phys. Lett., 2003, 20(4): 107801
[7] QIAN Zu-Wen, XIAO Ling. Finite-Amplitude Vibration of a Bubble[J]. Chin. Phys. Lett., 2003, 20(1): 107801
[8] LU Mei-Jun, CHEN Wei-Zhong, JIANG Li-An, LI Sheng-Qiong, WANG Wen-Jie. Single-Bubble Sonoluminescence Under Different Driving Pressures[J]. Chin. Phys. Lett., 2003, 20(1): 107801
[9] LU Mei-Jun, CHEN Wei-Zhong, SHEN Jian-Hua, WANG Wen-Jie, LI Sheng-Qiong. Temperature Effect on Single Bubble Sonoluminescence[J]. Chin. Phys. Lett., 2002, 19(6): 107801
[10] LI Liang-Liang, AN Yu, YING Chong-Fu. Experimental Parameters and the Stability of Sonoluminescing Bubbles[J]. Chin. Phys. Lett., 2001, 18(11): 107801
[11] CHEN Wei-Zhong, CHEN Xi, LU Mei-Jun, MIAO Guo-Qing, WEI Rong-Jue . Effects of Pulse Drive on Single Bubble Sonoluminescence [J]. Chin. Phys. Lett., 2001, 18(8): 107801
[12] CHEN Wei-zhong, WEI Rong-jue. Dynamic Casimir Effect in Single Bubble Sonoluminescence[J]. Chin. Phys. Lett., 1999, 16(10): 107801
[13] XIE Zhi-Xing, CHEN Wei-zhong, WEI Rong-jue. Calculation of a Nonuniform and Nonadiabatic Model of Sonoluminescence[J]. Chin. Phys. Lett., 1998, 15(11): 107801
Viewed
Full text


Abstract